%
%LaTeX2.09 %Kiyoshi Shiraishi Sept 11, 1997 \documentstyle{article} \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} \newcommand{\bea}{\begin{eqnarray}} \newcommand{\eea}{\end{eqnarray}} \newcommand{\nn}{\nonumber \\} \title{A String Theory Primer} \author{Kiyoshi Shiraishi} \begin{document} \maketitle \begin{abstract} We focus our attention on bosonic closed string theory. \end{abstract} \section{Classical action} \noindent {\bf Polyakov action}: \be I=-\frac{T}{2}\int d^2\sigma\sqrt{-\gamma}\gamma^{ab} \partial_aX^\mu\partial_bX^\nu \eta_{\mu\nu}, \ee where $a,b=0,1$,$\mu,\nu=0,\dots,D-1$, and $\eta_{\mu\nu}=diag.(-1,1,\dots,1)$. $\tau=\sigma^0, \sigma=\sigma^1$. $T=1/(2\pi\alpha')$. Taking the following variations, we get: \bea \frac{\delta I}{\delta X^\mu}=0 &\rightarrow& \nabla^a\nabla_a X^\mu=0 \\ \frac{\delta I}{\delta \gamma_{ab}}=0 &\rightarrow& T_{ab}=0, \eea where \be T_{ab}=\partial_aX^\mu\partial_bX_\mu- \frac{1}{2}\gamma_{ab}\gamma^{cd}\partial_cX^\mu\partial_dX_\mu . \ee Note that $T^{a}_{a}=T_{ab}\gamma^{ab}$ identically vanishes ($\leftrightarrow$ Weyl invariance). \vspace{1cm} \noindent {\bf Invariances}: \begin{itemize} \item global Poincar\'e invariance \bea \delta X^{\mu}&=&a^{\mu}{}_{\nu} X^{\nu}+b^{\mu}~~~~~a_{\mu\nu}=-a_{\nu\mu} \\ \delta \gamma_{ab}&=&0 \eea \item local reparametrization invariance \bea \delta X^{\mu}&=&\xi^a \partial_a X^{\mu} \\ \delta \gamma_{ab}&=&\nabla_a \xi_b + \nabla_b \xi_a \eea \item local Weyl invariance \bea \delta X^{\mu}&=&0 \\ \delta \gamma_{ab}&=&2 \Lambda(\sigma) \gamma_{ab} \eea \end{itemize} \vspace{1cm} \noindent {\bf Conformal gauge} Using these invariances, we can take \be \gamma_{ab}=e^{2 \phi}\eta_{ab} .~~~~~(conformal~gauge) \ee Then the equation of motion for $X^{\mu}$ reads \be \left(\frac{\partial^2}{\partial \tau^2}- \frac{\partial^2}{\partial \sigma^2}\right) X^{\mu}(\tau,\sigma)=0 . \ee This is the 2-dimensional wave equation. Thus $X^{\mu}$ can be considered as free fields in 2-dimensions. \vspace{1cm} \noindent {\bf Boundary conditions} By using the reparametrization invariance, we can take: \begin{itemize} \item for closed string \be X^{\mu}(\tau,\sigma+\pi)=X^{\mu}(\tau,\sigma) , \ee \item for open string \be \left.\frac{\partial X^{\mu}}{\partial \sigma}\right|_{\sigma=0}= \left.\frac{\partial X^{\mu}}{\partial \sigma}\right|_{\sigma=\pi}=0 . \ee \end{itemize} \vspace{1cm} \noindent {\bf Components of $T_{ab}$} In conformal gauge: \bea T_{00}&=&T_{11}=\frac{1}{2}\left(\dot{X}^2+{X'}^2\right) \\ T_{01}&=&T_{10}=\dot{X}\cdot X' , \eea where $\dot{X}^\mu=\frac{\partial X^{\mu}}{\partial\tau}$ and ${X^{\mu}}'=\frac{\partial X^{\mu}}{\partial\sigma}$. Thus \be T_{ab}=0 \Leftrightarrow \left(\dot{X}\pm X'\right)^2=0 . \ee \vspace{1cm} \noindent {\bf Canonical conjugate of $X^{\mu}$} In conformal gauge \be I=-\frac{T}{2}\int d\tau d\sigma \left[-\dot{X}^2+{X'}^2\right] . \ee Then the canonical momentum is \be \Pi_{\mu}=T \dot{X}^{\mu} . \ee \section{Quantization of closed strings} \subsection{Covariant approach (global Poincar\'e inv. is manifest)} $X^{\mu}$ can be expanded as the equation of motion and the boundary condition satisfied: \be X^{\mu}(\tau,\sigma)=x^{\mu}+2\alpha' p^{\mu} \tau+ \frac{i}{2}\sqrt{2\alpha'}\sum^{\infty}_{n=-\infty,n\neq 0} \frac{1}{n}\left(\alpha^{\mu}_{n} e^{-2in(\tau-\sigma)} +\tilde{\alpha}^{\mu}_{n} e^{-2in(\tau+\sigma)}\right) . \ee Here $\alpha^{\mu}_{-n}=\alpha^{\mu}_{n}\dag$ and $\tilde{\alpha}^{\mu}_{-n}=\tilde{\alpha}^{\mu}_{n}\dag$. We propose the equal-time($\tau$) commutation relations: \be \left[X^{\mu}(\tau,\sigma), \Pi^{\nu}(\tau,\sigma')\right]= \left[X^{\mu}(\tau,\sigma), T \dot{X}^{\nu}(\tau,\sigma')\right]= i \eta^{\mu\nu} \delta (\sigma-\sigma'), etc. \ee Then we get \be [x^{\mu},p^{\nu}]=i \eta^{\mu\nu}, [\alpha^{\mu}_{m},\alpha^{\nu}_{n}]=m \delta_{m+n,0} \eta^{\mu\nu} [\tilde{\alpha}^{\mu}_{m},\tilde{\alpha}^{\nu}_{n}]= m \delta_{m+n,0} \eta^{\mu\nu}, [\alpha^{\mu}_{m},\tilde{\alpha}^{\nu}_{n}]=0 . \ee \vspace{1cm} \noindent {\bf Virasoro operators} \bea L_{m}=\frac{T}{2}\int^{\pi}_{0}d\sigma e^{+2im(\tau-\sigma)} \frac{1}{2}\left(T_{00}-T_{01}\right)= \frac{1}{2}\sum^{\infty}_{n=-\infty}\alpha_{m-n}\cdot\alpha_{n} \\ \tilde{L}_{m}=\frac{T}{2}\int^{\pi}_{0}d\sigma e^{+2im(\tau+\sigma)} \frac{1}{2}\left(T_{00}+T_{01}\right)= \frac{1}{2}\sum^{\infty}_{n=-\infty}\tilde{\alpha}_{m-n}\cdot \tilde{\alpha}_{n} \eea for $m\neq 0$, and \bea L_{0}= \frac{\alpha'}{4}p^2+\sum^{\infty}_{n=1}\alpha_{-n}\cdot\alpha_{n} \\ \tilde{L}_{0}= \frac{\alpha'}{4}p^2+\sum^{\infty}_{n=1}\tilde{\alpha}_{-n}\cdot \tilde{\alpha}_{n} \eea for $m=0$. Note that $L_{-n}=L_{n}\dag$ and $\tilde{L}_{-n}=\tilde{L}_{n}\dag$. They satisfies the Virasoro algebla: \bea \left[L_{m},L_{n}\right]&=&(m-n)L_{m+n}+\frac{D}{12}(m^3-m)\delta_{m+n,0} \\ \left[\tilde{L}_{m},\tilde{L}_{n}\right]&=&(m-n)\tilde{L}_{m+n}+ \frac{D}{12}(m^3-m)\delta_{m+n,0} \\ \left[L_{m},\tilde{L}_{n}\right]&=&0 \eea \vspace{1cm} \noindent {\bf Virasoro condition for physical states} \be L_{n}|phys\rangle=0~~~and~~~\tilde{L}_{n}|phys\rangle=0 \ee for $n>0$. \be \langle phys'|L_{-n}|phys\rangle=\langle phys'|L_{n} \dag |phys\rangle= (\langle phys|L_{n}|phys'\rangle)\dag=0 \ee for $n>0$. Thus $\langle phys'|T_{ab}|phys\rangle=0$. For $n=0$, \be (L_{0}-\tilde{L}_{0})|phys\rangle=0,~~~ (L_{0}-a)|phys\rangle=0,~~~ (\tilde{L}_{0}-a)|phys\rangle=0 \ee \vspace{1cm} \noindent {\bf $(mass)^2$ for physical states} \bea M^2=-p^{\mu}p_{\mu}=\frac{2}{\alpha'}(N+\tilde{N}-2a), \\ N-\tilde{N}=0 , \eea where \be N=\sum^{\infty}_{n=1}\alpha_{-n}\cdot\alpha_{n}, ~~~~~~~ \tilde{N}=\sum^{\infty}_{n=1}\tilde{\alpha}_{-n}\cdot\tilde{\alpha}_{n}. \ee Note that \be [N,\alpha^{\mu}_{-n}]=n \alpha^{\mu}_{n}, [\tilde{N},\tilde{\alpha}^{\mu}_{-n}]=n \tilde{\alpha}^{\mu}_{n}. \ee \vspace{1cm} \noindent {\bf spurious states} \be L_{-n}|*\rangle \ee for $n>0$. \be |phys\rangle\sim |phys\rangle+L_{-n}|*\rangle \ee \subsection{Light cone quantization (global Poincar\'e inv. is not manifest)} \be X^{\pm}=\frac{1}{\sqrt{2}}(X^0\pm X^1) \ee By using local reparametrization inv., we can take \be X^{+}(\tau)=x^{+}+2\alpha' p^{+} \tau . \ee There are commutation relations for $\alpha^{i}_{n}$ and $\tilde{\alpha}^{i}_{n}$, similar to the previous approach, but $i=2,\dots,D-1$ in the present case. \vspace{1cm} \noindent {\bf $(mass)^2$} \bea \dot{X}^2+{X'}^2=0 &\Rightarrow& 2\alpha' p^{+}\dot{X}^{-}= \frac{1}{2}(\dot{X}^{i}{}^2+{{X^{i}}'}^2) \\ \dot{X}\cdot{X'}=0 &\Rightarrow& 2\alpha' p^{+}{X^{-}}'= {\dot{X}^{i}}\cdot{{X^{i}}'} \eea {}From these \bea M^2=-p^{\mu}p_{\mu}=2 p^{+}p^{-}-p^{i}p^{i}= \frac{1}{\alpha'}\sum^{\infty}_{n=-\infty,n\neq 0} (\alpha^{i}_{-n}\alpha^{i}_{n}+ \tilde{\alpha}^{i}_{-n}\tilde{\alpha}^{i}_{n}), \\ \sum^{\infty}_{n=-\infty,n\neq 0}(\alpha^{i}_{-n}\alpha^{i}_{n}- \tilde{\alpha}^{i}_{-n}\tilde{\alpha}^{i}_{n}) =0 . \eea \bea \sum^{\infty}_{n=-\infty,n\neq 0} \alpha^{i}_{-n}\alpha^{i}_{n}&=& \sum^{\infty}_{n=1}\alpha^{i}_{-n}\alpha^{i}_{n}+ \sum^{\infty}_{n=1}\alpha^{i}_{n}\alpha^{i}_{-n} \nn &=&2 \sum^{\infty}_{n=1}\alpha^{i}_{-n}\alpha^{i}_{n}+ \sum^{D-1}_{i=2}\sum^{\infty}_{n=1}[\alpha^{i}_{n},\alpha^{i}_{-n}] \nn &=&2 \sum^{\infty}_{n=1}\alpha^{i}_{-n}\alpha^{i}_{n}+ (D-2)\sum^{\infty}_{n=1} n . \eea Here, for Riemann zeta fn. $\zeta(s)=\sum^{\infty}_{n=1}n^{-s}$, $\zeta(-1)=-\frac{1}{12}$, we replace $\sum^{\infty}_{n=1} n \Rightarrow -\frac{1}{12}$. \bea M^2=\frac{2}{\alpha'}(N+\tilde{N}-2a), \\ N-\tilde{N}=0, \eea where \be N=\sum^{\infty}_{n=1}\alpha^{i}_{-n}\alpha^{i}_{n}, ~~~~~~~ \tilde{N}=\sum^{\infty}_{n=1}\tilde{\alpha}^{i}_{-n}\tilde{\alpha}^{i}_{n}. \ee By checking the algebla of generators of Lorentz transformation $M_{\mu\nu}$ ($\leftrightarrow$ global Lorentz inv.), we must take $D=26$ and $a=1$. \vspace{1cm} \noindent {\bf Low mass states} \begin{itemize} \item Lowest \be |0;k\rangle~~~~~~~~~~~M^2=-\frac{4}{\alpha'}<0~~~~tachyon \ee \item 1st excited \be \alpha^{i}_{-1}\tilde{\alpha}^{j}_{-1}|0;k\rangle~~~~~~~~~~~M^2= 0~~~~graviton, antisymmetric field, dilaton \ee \end{itemize} \subsection{Path integral quantization} \section{Effective field theory for massless fields} \bea I=-\frac{T}{2}\int d^2 \sigma&& \left[\frac{}{} \sqrt{-\gamma}\gamma^{ab}\partial_a X^{\mu}\partial_b X^{\nu}g_{\mu\nu}(X)+ \epsilon^{ab}\partial_a X^{\mu}\partial_b X^{\nu}B_{\mu\nu}(X)\right. \nn & &\left.-\frac{\alpha'}{2}\sqrt{-\gamma}~{}^{(2)}\!\!R \Phi(X)\right] \eea In the background field, \be 2\pi T^{a}_{a}= \beta^{g}_{\mu\nu}\sqrt{-\gamma}\gamma^{ab}\partial_a X^{\mu}\partial_b X^{\nu}+ \beta^{B}_{\mu\nu}\epsilon^{ab}\partial_a X^{\mu}\partial_b X^{\nu}+ \beta^{\Phi}\sqrt{-\gamma}~{}^{(2)}\!\!R . \ee Weyl inv. $\leftrightarrow$ $T^{a}_{a}=0$ \bea \beta^{g}_{\mu\nu}&=&R_{\mu\nu}-\frac{1}{4}H_{\mu}{}^{\lambda\sigma} H_{\nu\lambda\sigma}+2\nabla_{\mu}\nabla_{\nu}\Phi+O(\alpha')=0 \\ \beta^{B}_{\mu\nu}&=&\nabla_{\lambda}H^{\lambda}{}_{\mu\nu}- 2(\nabla_{\lambda}\Phi)H^{\lambda}{}_{\mu\nu}+O(\alpha')=0 \\ \frac{\beta^{\Phi}}{\alpha'}&=&\frac{D-26}{48\pi^{2}\alpha'}+ \frac{1}{16\pi^2}\left[4(\nabla\Phi)^2-4\nabla^{2}\Phi-R+ \frac{1}{12}H^{2}\right]+O(\alpha')=0 \eea These can be derived from the effective action: \be S=\frac{1}{2\kappa^2}\int d^D x \sqrt{-g} e^{-2\Phi}\left[ R+4(\nabla\Phi)^2-\frac{1}{12}H^{2}-\frac{D-26}{3\alpha'}\right] +O(\alpha') \ee \section{Torus compactifications of closed string theory and T duality} \subsection{closed string on $S^1$} \be X^{25}(\tau,\sigma+\pi)=X^{25}(\tau,\sigma)+2\pi R \ell,~~~~~\ell\in {\bf Z} \ee \bea & &X^{25}(\tau,\sigma)= \nn & &x^{25}+2\alpha' p^{25} \tau+2R\ell\sigma+ \frac{i}{2}\sqrt{2\alpha'}\sum_{n\neq 0} \frac{1}{n}\left(\alpha^{25}_{n} e^{-2in(\tau-\sigma)} +\tilde{\alpha}^{25}_{n} e^{-2in(\tau+\sigma)}\right) \eea \be p^{25}\rightarrow \frac{m}{R}~~~~~~~~m\in {\bf Z} \ee \bea M^2&=&\left(\frac{m}{R}\right)^2+\left(\frac{R\ell}{\alpha'}\right)^2+ \frac{2}{\alpha'}(N+\tilde{N}-2) \\ &=&(KK~mode)+(winding~mode)+(oscillation~mode) \eea \be N-\tilde{N}=m\ell \ee \vspace{1cm} \noindent {\bf T duality} \bea R &\leftrightarrow& \frac{\alpha'}{R} \\ \ell &\leftrightarrow& m \eea \subsection{closed string on $T^N$} \subsection{background antisymmetric field} \vspace{1cm} \noindent {\bf T duality in general} \begin{itemize} \item For $S^1$ \bea R &\rightarrow& \frac{\alpha'}{R} \\ \Phi &\rightarrow& \Phi - \ln \frac{R}{\alpha'} \eea \bea ~~~~~~~~\heartsuit ~~&~& S\sim \int dX^{25}e^{-2\Phi}[\cdots] \\ & &R e^{-2\Phi}=R'e^{-2\Phi'}=\frac{\alpha'}{R}e^{-2\Phi'} \eea \item For $T^N$ ($\alpha'=1$) \bea g+B &\rightarrow& (g+B)^{-1} \\ \Phi &\rightarrow& \Phi - \frac{1}{2}\ln \det (g+B) \eea \end{itemize} \section{Appendix: Cosmological constant} \end{document}