%
\documentstyle[12pt]{article} \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} \newcommand{\bea}{\begin{eqnarray}} \newcommand{\eea}{\end{eqnarray}} \newcommand{\nn}{\nonumber \\} \newcommand{\vnabla}{{\bf \nabla}} \newcommand{\vsigma}{{\bf \sigma}} \newcommand{\vA}{{\bf A}} %vector potential \newcommand{\vB}{{\bf B}} % \newcommand{\vD}{{\bf D}} \newcommand{\vE}{{\bf E}} \newcommand{\vF}{{\bf F}} \newcommand{\vg}{{\bf g}} \newcommand{\vH}{{\bf H}} \newcommand{\vI}{{\bf I}} \newcommand{\vi}{{\bf i}} \newcommand{\vJ}{{\bf J}} \newcommand{\vj}{{\bf j}} \newcommand{\vM}{{\bf M}} \newcommand{\vP}{{\bf P}} \newcommand{\vS}{{\bf S}} \newcommand{\vs}{{\bf s}} \newcommand{\vv}{{\bf v}} \newcommand{\vx}{{\bf x}} %%%%%%%%%%%%%%% %\hfill {ver. 1.0} %%%%%%%%%%%%%%% \title{ Statistical Physics 2 } \author{Based on Tribble's book, Kiyoshi Shiraishi } \date{ver. 1.0} \begin{document} \maketitle \begin{abstract} Yamaguchi University \end{abstract} \section{Quantum gas} %%%%%%%%%%%%%%%%%%%% \subsection{Partition function} \be Z(\beta)=\sum_s e^{-\beta E_s} , \ee where $\beta=(kT)^{-1}$. \be P(s)=\frac{e^{-\beta E_s}}{Z} \ee \be Z(\beta)=\sum_{E_s} g(E_s) e^{-\beta E_s} \ee \be P(E_s)=g(E_s)\frac{e^{-\beta E_s}}{Z} \ee \be \langle E\rangle=\frac{\sum_s E_s e^{-\beta E_s}}{Z}=-\frac{\partial\ln Z}{\partial\beta} \ee \be \langle n_s\rangle=-\frac{1}{\beta}\frac{\partial\ln Z}{\partial E_s} \ee \be E=\sum_s n_s E_s \ee \be N=\sum_s n_s \ee \be Z=\sum_{\{n_s\}}\exp\left(-\beta\sum_s n_s E_s\right) \ee \subsection{Bose-Einstein gas (bosons)} \bea Z&=&\sum_{n_1=0}^{\infty}\sum_{n_2=0}^{\infty}\cdots \exp\left(-\beta\sum_s n_s E_s\right) \nn &=&\sum_{n_1=0}^{\infty}\sum_{n_2=0}^{\infty}\cdots \exp\left(-\beta(n_1 E_1+n_2 E_2+\cdots)\right) \nn &=&\left\{\sum_{n_1=0}^{\infty}\exp\left(-\beta n_1 E_1\right)\right\} \left\{\sum_{n_2=0}^{\infty}\exp\left(-\beta n_2 E_2\right)\right\}\cdots \nn &=&\prod_{s=0}^{\infty} \left\{\sum_{n_s=0}^{\infty}\exp\left(-\beta n_s E_s\right)\right\} \nn &=&\prod_{s=0}^{\infty} \left\{\frac{1}{1-\exp\left(-\beta E_s\right)}\right\} \eea \be \ln Z=-\sum_{s=0}^{\infty}\ln\left[1-\exp(-\beta E_s)\right] \ee \bea \langle E\rangle&=&-\frac{\partial\ln Z}{\partial\beta} \nn &=&\frac{\partial}{\partial\beta}\left\{ \sum_{s=0}^{\infty}\ln\left[1-\exp(-\beta E_s)\right]\right\} \nn &=&\sum_{s=0}^{\infty}\left\{\frac{\partial}{\partial\beta} \ln\left[1-\exp(-\beta E_s)\right]\right\} \nn &=&\sum_{s=0}^{\infty}\left\{\frac{E_s}{\exp(\beta E_s)-1}\right\} \eea \bea \langle n_s\rangle&=&-\frac{1}{\beta}\frac{\partial\ln Z}{\partial E_s} \nn &=&\frac{1}{\beta}\frac{\partial}{\partial E_s}\left\{ \sum_{s'=0}^{\infty}\ln\left[1-\exp(-\beta E_{s'})\right]\right\} \nn &=&\frac{1}{\beta}\frac{\partial}{\partial E_s}\left\{ \ln\left[1-\exp(-\beta E_{s})\right]\right\} \nn &=&\frac{\exp(-\beta E_s)}{1-\exp(-\beta E_s)} \nn &=&\frac{1}{\exp(\beta E_s)-1} \eea \subsubsection{Planck's law} \be f_{N,BE}(\omega)d\omega=\frac{dN_{\omega}}{dV}= \frac{1}{\pi^2 c^3}\frac{\omega^2}{\exp(\beta\hbar\omega)-1}d\omega \ee \be f_{E,BE}(\omega)d\omega=\frac{dN_{\omega}}{dV}= \frac{\hbar}{\pi^2 c^3}\frac{\omega^2}{\exp(\beta\hbar\omega)-1}d\omega \ee \subsection{Fermi-Dirac gas (fermions)} \bea Z&=&\sum_{n_1=0}^{1}\sum_{n_2=0}^{1}\cdots \exp\left(-\beta\sum_s n_s E_s\right) \nn &=&\sum_{n_1=0}^{1}\sum_{n_2=0}^{1}\cdots \exp\left(-\beta(n_1 E_1+n_2 E_2+\cdots)\right) \nn &=&\left\{\sum_{n_1=0}^{1}\exp\left(-\beta n_1 E_1\right)\right\} \left\{\sum_{n_2=0}^{1}\exp\left(-\beta n_2 E_2\right)\right\}\cdots \nn &=&\prod_{s=0}^{\infty} \left\{1+\exp\left(-\beta E_s\right)\right\} \eea \be \ln Z=\sum_{s=0}^{\infty}\ln\left[1+\exp(-\beta E_s)\right] \ee \bea \langle E\rangle&=&-\frac{\partial\ln Z}{\partial\beta} \nn &=&-\frac{\partial}{\partial\beta}\left\{ \sum_{s=0}^{\infty}\ln\left[1+\exp(-\beta E_s)\right]\right\} \nn &=&-\sum_{s=0}^{\infty}\left\{\frac{\partial}{\partial\beta} \ln\left[1+\exp(-\beta E_s)\right]\right\} \nn &=&\sum_{s=0}^{\infty}\left\{\frac{E_s}{\exp(\beta E_s)+1}\right\} \eea \bea \langle n_s\rangle&=&-\frac{1}{\beta}\frac{\partial\ln Z}{\partial E_s} \nn &=&-\frac{1}{\beta}\frac{\partial}{\partial E_s}\left\{ \sum_{s'=0}^{\infty}\ln\left[1+\exp(-\beta E_{s'})\right]\right\} \nn &=&-\frac{1}{\beta}\frac{\partial}{\partial E_s}\left\{ \ln\left[1+\exp(-\beta E_{s})\right]\right\} \nn &=&\frac{\exp(-\beta E_s)}{1+\exp(-\beta E_s)} \nn &=&\frac{1}{\exp(\beta E_s)+1} \eea \section{Counting statistics} %%%%%%%%%%%%%%%%%%%% \be \Omega_{\Delta E}=\sum_{\{n_i\}}W(\{n_i\}) \ee The sum is over all sets $\{n_i\}$ such that $\sum_i n_i \epsilon_i=E$, $\sum_i n_i=N$. \be \ln\Omega_{\Delta E}(E,V,N)\approx\ln W(\{\bar{n}_i\}) \ee \be f(n_i)=\ln W(\{n_i\})-\alpha\sum_i n_i-\beta\sum_i \epsilon_i n_i \ee \be \frac{\partial f}{\partial n_i}=0\rightarrow n_i=\bar{n}_i \ee \subsection{Maxwell-Boltzmann gas (distinguishable particles)} $\prod_i g_i^{n_i}=$number of ways $n_i$ distinguishable objects can occupy $g_i$ levels with no restrictions $\prod_i n_i !=$number of ways to place $N$ objects into cells such that there are $n_i$ objects in the $i$th cell. $N !=$number of equivalent permutations \be W(\{n_i\})=\frac{N!\prod_i g_i^{n_i}}{\prod_i n_i!} \ee \be \Omega_{\Delta E}=\sum_{\{n_i\}}\frac{N!\prod_i g_i^{n_i}}{\prod_i n_i!} \ee \be f(n_i)=\ln\frac{N!\prod_i g_i^{n_i}}{\prod_i n_i!}- \alpha\sum_i n_i-\beta\sum_i \epsilon_i n_i \ee \be f(n_i)\approx(N\ln N-N)+\sum_i\left[n_i\ln g_i-(n_i\ln n_i-n_i)- \alpha n_i-\beta\epsilon_i n_i\right] \ee \be \ln g_i-\ln n_i-\alpha-\beta\epsilon_i=0 \ee \be \frac{g_i}{\bar{n}_i}=e^{\alpha}e^{\beta\epsilon_i} \ee \be \bar{n}_i=g_i e^{-\alpha-\beta\epsilon_i}=g_i e^{-\beta(\epsilon_i-\mu)}, \ee where $-\beta\mu=\alpha$. \subsection{Bose-Einstein gas (bosons)} $\frac{(n_i+g_i-1)!}{n_i!(g_i-1)!}=$number of ways to choose $g_i$ objects such that the sum is $n_i$ objects. \be W(\{n_i\})=\prod_i \frac{(n_i+g_i-1)!}{n_i!(g_i-1)!} \ee \be \Omega_{\Delta E}=\sum_{\{n_i\}}\prod_i \frac{(n_i+g_i-1)!}{n_i!(g_i-1)!} \ee \be f(n_i)=\ln\prod_i \frac{(n_i+g_i-1)!}{n_i!(g_i-1)!}- \alpha\sum_i n_i-\beta\sum_i \epsilon_i n_i \ee \be f(n_i)=\sum_i\left[\ln (n_i+g_i-1)!-\ln n_i!-\ln (g_i-1)!- \alpha n_i-\beta\epsilon_i n_i\right] \ee \bea f(n_i)&\approx&\sum_i\left[(n_i+g_i-1)\ln (n_i+g_i-1)-(n_i+g_i-1)\right. \nn & &-(n_i\ln n_i-n_i)-((g_i-1)\ln (g_i-1)-(g_i-1)) \nn & &-\left.\alpha n_i-\beta\epsilon_i n_i\right] \eea \be \ln (n_i+g_i)-\ln n_i-\alpha-\beta\epsilon_i=0 \ee \be \frac{\bar{n}_i+g_i}{\bar{n}_i}=e^{\beta(\epsilon_i-\mu)} \ee \be \bar{n}_i=\frac{g_i}{e^{\beta(\epsilon_i-\mu)}-1}, \ee where $-\beta\mu=\alpha$. \subsection{Fermi-Dirac gas (fermions)} $\frac{g_i!}{n_i!(g_i-n_i)!}=$number of ways to choose $n_i$ objects out of $g_i$ objects. \be W(\{n_i\})=\prod_i \frac{g_i!}{n_i!(g_i-n_i)!} \ee \be \Omega_{\Delta E}=\sum_{\{n_i\}}\prod_i \frac{g_i!}{n_i!(g_i-n_i)!} \ee \be f(n_i)=\ln\prod_i \frac{g_i!}{n_i!(g_i-n_i)!}- \alpha\sum_i n_i-\beta\sum_i \epsilon_i n_i \ee \be f(n_i)=\sum_i\left[\ln g_i!-\ln n_i!-\ln (g_i-n_i)!- \alpha n_i-\beta\epsilon_i n_i\right] \ee \bea f(n_i)&\approx&\sum_i\left[g_i\ln g_i-g_i\right. \nn & &-(n_i\ln n_i-n_i)-((g_i-n_i)\ln (g_i-n_i)-(g_i-n_i)) \nn & &-\left.\alpha n_i-\beta\epsilon_i n_i\right] \eea \be -\ln n_i+\ln (g_i-n_i)-\alpha-\beta\epsilon_i=0 \ee \be \frac{g_i-\bar{n}_i}{\bar{n}_i}=e^{\beta(\epsilon_i-\mu)} \ee \be \bar{n}_i=\frac{g_i}{e^{\beta(\epsilon_i-\mu)}+1}, \ee where $-\beta\mu=\alpha$. \section{Phase transitions}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Bose-Einstein condensation} \be Z_{G}{}_{BE}(T,V,\mu)=\prod_{\ell=0}^{\infty}\left( \frac{1}{1-e^{-\beta(\epsilon_{\ell}-\mu)}}\right) \ee \be \langle N\rangle=\sum_{\ell=0}^{\infty}\left( \frac{1}{e^{\beta(\epsilon_{\ell}-\mu)}-1}\right)= \sum_{\ell=0}^{\infty}\langle n_{pl}\rangle \ee \be \langle n_{pl}\rangle=\frac{1}{e^{\beta\epsilon_{\ell}}z^{-1}-1} \ee \be \langle n_{0}\rangle=\frac{z}{1-z}\stackrel{z\rightarrow 1}{\rightarrow}\infty \ee \be \Omega_{BE}(T,V,\mu)=-kT\ln Z_{BE}(T,V,\mu) \ee \be \Omega_{BE}(T,V,\mu)=kT\sum_{\ell=0}^{\infty} \ln\left(1-e^{-\beta(\epsilon_{\ell}-\mu)}\right) \ee \be \frac{\Omega}{V}=\frac{kT}{V}\ln (1-z)+\frac{kT}{V}\sum_{\ell=0}^{\infty} \ln\left(1-e^{-\beta(\epsilon_{\ell}-\mu)}\right) \ee \be \sum_{\ell}\rightarrow\frac{V}{(2\pi)^3}\int d\vec{k}_{\ell}= \frac{V}{h^3}\int d\vec{p}_{\ell} \ee \be \frac{\Omega}{V}=\frac{kT}{V}\ln (1-z)+\frac{kT}{V}\frac{V}{h^3}\int d\vec{p}_{\ell} \ln\left(1-e^{-\beta(\epsilon_{\ell}-\mu)}\right) \ee \be \frac{\Omega}{V}=\frac{kT}{V}\ln (1-z)+\frac{kT}{V}\frac{V}{h^3}\int d\vec{p}_{\ell} \ln\left(1-ze^{-\beta p^2/2m}\right) \ee \be \frac{\Omega}{V}=\frac{kT}{V}\ln (1-z)+\frac{kT}{V}\frac{V}{h^3}\int d\vec{x} \left(\frac{2m}{\beta}\right)^{1/2}\ln\left(1-ze^{-\beta x^2}\right) \ee \be \frac{\Omega}{V}=\frac{kT}{V}\ln (1-z)+\frac{kT}{h^3}\left(\frac{2m}{\beta}\right)^{1/2} 4\pi\int x^2\ln\left(1-ze^{-\beta x^2}\right)dx \ee \be \frac{\Omega}{V}=\frac{kT}{V}\ln (1-z)-\frac{kT}{\lambda_T^3}g_{5/2}(z), \ee where $\lambda_T=\left(\frac{2\pi\hbar^2}{mkT}\right)^{1/2}$ and \be g_{5/2}(z)=-\frac{4}{\sqrt{\pi}}=\frac{kT}{V}\int_0^{\infty} dx x^2\ln\left(1-ze^{-\beta x^2}\right)=\sum_{\alpha=1}^{\infty} \frac{z^{\alpha}}{\alpha^{5/2}} \ee \be \frac{\langle N\rangle}{V}=\frac{\langle n_0\rangle}{V}+\sum_{\ell=0}^{\infty} \left(\frac{1}{z^{-1}e^{\beta\epsilon_{\ell}}-1}\right) \ee \be \frac{\langle N\rangle}{V}=\frac{\langle n_0\rangle}{V}+ \frac{1}{\lambda_T^{3}}g_{3/2}(z), \ee where \be g_{3/2}(z)=z\frac{\partial}{\partial z}g_{5/2}(z)=\sum_{\alpha=1}^{\infty} \frac{z^{\alpha}}{\alpha^{3/2}} \ee \be \left(\frac{\langle N\rangle}{V}\lambda_T^{3}\right)_{z=0}= g_{3/2}(0)=0 \ee \be \left(\frac{\langle N\rangle}{V}\lambda_T^{3}\right)_{z=1}= g_{3/2}(1)=\zeta\left(\frac{3}{2}\right)=2.612 \ee \be \frac{\langle N\rangle}{V}\lambda_T^{3}=g_{3/2}(z), \ee for $\frac{\langle N\rangle}{V}\lambda_T^{3}<2.612$, and \be \frac{\langle N\rangle}{V}\lambda_T^{3}= \frac{\langle n_0\rangle}{V}\lambda_T^{3}+g_{3/2}(1), \ee for $\frac{\langle N\rangle}{V}\lambda_T^{3}\ge 2.612$. \be \lambda_T^{3}\ge 2.612\frac{V}{\langle N\rangle} \ee \be T_c=\left(\frac{2\pi\hbar^2}{mk}\right) \left(\frac{\langle N\rangle}{2.612 V}\right)^{2/3} \ee \be \left(\frac{\langle N\rangle}{V}\right)_c=2.612 \left(\frac{mkT}{2\pi\hbar^2}\right)^{3/2} \ee \subsection{The Ising model} \be E(\sigma_1,\sigma_2,\dots,\sigma_n)= -J\sum_{j=1}^N \sigma_j\sigma_{j+1}-H\sum_{j=1}^N \sigma_j, \ee where $\sigma_j=\pm 1$. \be Z_N=\sum_{\sigma}e^{-\beta E(\sigma)}=\sum_{\sigma}\exp\left\{-\beta \left[-J\sum_{j=1}^N \sigma_j\sigma_{j+1}-H\sum_{j=1}^N \sigma_j \right]\right\} \ee \be Z_N=\sum_{\sigma_1=\pm 1}\cdots\sum_{\sigma_N=\pm 1}\left[ e^{h\sigma_1/2}e^{K\sigma_1\sigma_2}e^{h\sigma_2/2} e^{h\sigma_2/2}e^{K\sigma_2\sigma_3}e^{h\sigma_3/2}\cdots \right], \ee where $K=\frac{J}{kT}$, and $h=\frac{H}{kT}$. \be Z_N=\sum_{\sigma_1=\pm 1}\cdots\sum_{\sigma_N=\pm 1} V(\sigma_1,\sigma_2)V(\sigma_2,\sigma_3)\cdots V(\sigma_N,\sigma_1), \ee where \be V(\sigma,\sigma')=\exp\left[K\sigma\sigma'+\frac{h}{2}(\sigma+\sigma')\right] \ee \be V(\sigma,\sigma')=\left( \begin{array}{cc} e^{K+h} & e^{-K}\\ e^{-K} & e^{K-h} \end{array} \right) \ee \be \det\left| \begin{array}{cc} e^{K+h}-\lambda & e^{-K}\\ e^{-K} & e^{K-h}-\lambda \end{array} \right|= (e^{K+h}-\lambda)(e^{K-h}-\lambda)-e^{-2K}=0 \ee \be \lambda^2-e^K(e^h+e^{-h})\lambda+(e^{2K}-e^{-2K})=0 \ee \be \lambda=e^K\frac{(e^h+e^{-h})}{2}\pm\frac{1}{2}\left[ e^{2K}(e^h+e^{-h})^2-4(e^{2K}-e^{-2K})\right]^{1/2} \ee \be \lambda=e^K\cosh h\pm\left[ e^{2K}\cosh^2 h-(e^{2K}-e^{-2K})\right]^{1/2} \ee \be \lambda_1=e^K\cosh h+\left[ e^{2K}\sinh^2 h+e^{-2K}\right]^{1/2} \ee \be \lambda_2=e^K\cosh h-\left[ e^{2K}\sinh^2 h+e^{-2K}\right]^{1/2} \ee \be V=P\left( \begin{array}{cc} \lambda_1 & 0\\ 0 & \lambda_2 \end{array} \right)P^{-1} \ee \be Z_N={\rm Tr}V^N={\rm Tr}\left[ P\left( \begin{array}{cc} \lambda_1 & 0\\ 0 & \lambda_2 \end{array} \right)P^{-1} P\left( \begin{array}{cc} \lambda_1 & 0\\ 0 & \lambda_2 \end{array} \right)P^{-1} \cdots P\left( \begin{array}{cc} \lambda_1 & 0\\ 0 & \lambda_2 \end{array} \right)P^{-1} \right] \ee \be Z_N={\rm Tr}\left( \begin{array}{cc} \lambda_1 & 0\\ 0 & \lambda_2 \end{array} \right)^{N}= \lambda_1^N+\lambda_2^N \ee \be F=-kT\ln Z=-kT\ln\left[\lambda_1^N\left[ 1+\left(\frac{\lambda_2}{\lambda_1}\right)^N\right]\right] \ee \be F=-NkT\ln\lambda_1-kT\ln\left[ 1+\left(\frac{\lambda_2}{\lambda_1}\right)^N\right] \ee \be \lim_{N\rightarrow\infty} \left(\frac{\lambda_2}{\lambda_1}\right)^N=0 \ee %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Theory of solids} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsubsection{Einstein theory of solids} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Einstein assumed that a solid was composed of $3N$ independent distinguishable quantum oscillators. The Hamiltonian for a single quantum harmonic oscillator is \be \epsilon_{n}=\hbar\omega\left(n+\frac{1}{2}\right) . \ee We have \be Z_{N}(T,V)={\rm Tr} \exp \left[-\beta\hbar\omega \sum_{i=1}^{3N}\left(n_{i}+\frac{1}{2}\right)\right] , \ee or \be Z_{N}(T,V)= \sum_{n_{1}=0}^{\infty}\cdots\sum_{n_{3N}=0}^{\infty} \exp \left[-\beta\hbar\omega \sum_{i=1}^{3N}\left(n_{i}+\frac{1}{2}\right)\right] , \ee which is equivalent to \be Z_{N}(T,V)=\left[\frac{\exp(-\beta\hbar\omega/2)}{ 1-\exp(-\beta\hbar\omega)}\right]^{3N} . \ee The Helmholtz free energy is \bea F(T,V,N)&=&-kT\ln Z_{N} \nn &=&-3NkT\ln\left[\frac{\exp(-\beta\hbar\omega/2)}{ 1-\exp(-\beta\hbar\omega)}\right] \nn &=&\frac{3N\hbar\omega}{2}+3NkT\ln\left[1-\exp(-\beta\hbar\omega)\right] . \eea From this expression, we can find $S$, $C_{V}$, and other state functions. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsubsection{Debye theory of solids} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Debye assumed that the oscillators which composed the solids were coupled. We have \be H(\vec{p}^{N},\vec{q}^{N})= \sum_{i=1}^{3N}\frac{p_{i}^{2}}{2m}+\sum_{i,j=1}^{3N}A_{ij}q_{i}q_{j} . \ee The diagonal form is \be H(\vec{P}^{N},\vec{Q}^{N})= \sum_{i=1}^{3N}\frac{P_{i}^{2}}{2m}+\sum_{i=1}^{3N}\frac{m\omega_{i}^{2}}{2}Q_{i}^{2} . \ee Where the $\omega_{i}$'s are all different, the Hamiltonian may be rewritten as \be \hat{H}=\sum_{i=1}^{3N}\hbar\omega_{i}\left(\hat{N}+\frac{1}{2}\right) . \ee Thus, \be Z_{N}(T,V)= \sum_{n_{1}=0}^{\infty}\cdots\sum_{n_{3N}=0}^{\infty} \exp \left[-\beta\hbar \sum_{i=1}^{3N}\left(n_{i}+\frac{1}{2}\right)\omega_{i}\right] , \ee and the Helmholtz free energy is \be F(T,V,N)=\frac{\hbar}{2}\sum_{i=1}^{3N}\omega_{i}+ kT\sum_{i=1}^{3N}\ln\left[1-\exp(-\beta\hbar\omega_{i})\right] . \ee \section{Ground state properties of the electron gas}%%%%%%%%%%%% \be k_i=\frac{2\pi}{L} \ee \be \frac{\Omega}{(2\pi/L)^3}=\frac{\Omega V}{8\pi^3} \ee \be \left(\frac{4\pi k_F^3}{3}\right)\left(\frac{V}{8\pi^3}\right)= \frac{k_F^3}{6\pi^2}V \ee \be N=2\frac{k_F^3}{6\pi^2}V=\frac{k_F^3 V}{3\pi^2} \ee \be n=\frac{N}{V}=\frac{k_F^3}{3\pi^2} \ee \subsection{Definitions} \begin{itemize} \item Fermi sphere: Sphere of radius $k_F$ containing the occupied one-electron levels \item Fermi surface: Surface of the Fermi sphere, separates occupied from unoccupied levels. \item Fermi momentum: $p_F=\hbar k_F$ \item Fermi energy: $E_F=\frac{\hbar^2 k_F^2}{2m}$ \item Fermi velocity: $v_F=\frac{p_F}{m}$ \item Fermi temperature: $T_F=\frac{E_F}{k}$ \end{itemize} \end{document}