%
%LaTeX2.09 %Kiyoshi Shiraishi Oct. 10, 1997 \documentstyle[12pt]{article} \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} \newcommand{\bea}{\begin{eqnarray}} \newcommand{\eea}{\end{eqnarray}} \newcommand{\nn}{\nonumber \\} \newcommand{\vbeta}{{\bf \beta}} \newcommand{\vnabla}{{\bf \nabla}} \newcommand{\vsigma}{{\bf \sigma}} \newcommand{\vA}{{\bf A}} %vector potential \newcommand{\vB}{{\bf B}} % \newcommand{\vD}{{\bf D}} \newcommand{\vE}{{\bf E}} \newcommand{\vF}{{\bf F}} \newcommand{\vg}{{\bf g}} \newcommand{\vH}{{\bf H}} \newcommand{\vI}{{\bf I}} \newcommand{\vi}{{\bf i}} \newcommand{\vJ}{{\bf J}} \newcommand{\vj}{{\bf j}} \newcommand{\vM}{{\bf M}} \newcommand{\vP}{{\bf P}} \newcommand{\vp}{{\bf p}} \newcommand{\vr}{{\bf r}} \newcommand{\vS}{{\bf S}} \newcommand{\vs}{{\bf s}} \newcommand{\vv}{{\bf v}} \newcommand{\vx}{{\bf x}} %%%%%%%%%%%%%%% %\hfill {ver. 1.01} %%%%%%%%%%%%%%% \title{ Relativity } \author{Based on AIP The Physics Quick Reference Guide, fixed by Kiyoshi Shiraishi } \date{ver. 1.0} \begin{document} \maketitle \begin{abstract} Yamaguchi University \end{abstract} \section{Special relativity} %%%%%%%%%%%%%%%%%%%% \begin{itemize} \item Lorentz transformations: Transformation from an inertial reference frame $\Sigma$ to an inertial frame $\Sigma'$ moving with respect to $\Sigma$ with velocity $\beta c$ in the $+x$ direction: \be \gamma=(1-\beta^2)^{-1/2},~~\beta=\tanh\theta,~~\gamma=\cosh\theta, \ee \bea x'&=&\gamma(x-\beta ct)=x\cosh\theta-ct\sinh\theta,~~y'=y,~~z'=z, \\ ct'&=&\gamma(ct-\beta x)=-x\sinh\theta+ct\cosh\theta. \eea The inverse transformation $(\Sigma'\rightarrow\Sigma)$ reverses the sign of $\beta$. A body moving with velocity $\vv$ in $\Sigma$ moves with velocity $\vv'$ in $\Sigma'$: \be \tanh\phi_x=v_x/c,~~~\tanh{\phi'}_{x'}={v'}_{x'}/c, \ee \bea {v'}_{x'}&=&\frac{v_x-c\beta}{1-\beta v_x/c}=c\tanh(\phi_x-\theta),~~~ {\phi'}_{x'}=\phi_x-\theta, \\ {v'}_{y'}&=&\frac{v_y}{\gamma(1-\beta v_x/c)}=v_y\frac{\cosh\phi_x}{\cosh{\phi'}_{x'}}, \\ {v'}_{z'}&=&\frac{v_z}{\gamma(1-\beta v_x/c)}=v_z\frac{\cosh\phi_x}{\cosh{\phi'}_{x'}}. \eea The transformation of forces on a moving particle: \bea {F'}_{x'}&=&F_x-\frac{\beta}{c-\beta v_x}\left(v_yF_y+v_zF_z\right), \\ {F'}_{y'}&=&\frac{c}{\gamma(c-\beta v_x)}F_y, \\ {F'}_{z'}&=&\frac{c}{\gamma(c-\beta v_x)}F_z. \eea The transformation of the electromagnetic field: \bea {E'}_{x'}&=&E_x,~~~{E'}_{y'}=\gamma(E_y-\beta B_z),~~~{E'}_{z'}=\gamma(E_z+\beta B_y), \\ {B'}_{x'}&=&B_x,~~~{B'}_{y'}=\gamma(B_y+\beta E_z),~~~{B'}_{z'}=\gamma(B_z-\beta E_y). \eea \item Energy: \be E=\gamma mc^2=mc^2+(kinetic~energy). \ee \item Energy-Momentum Transformation: \bea {p'}_{x}&=&\gamma(p_x-\beta E/c)=p_x\cosh\theta-E\sinh\theta /c, \\ {p'}_{y}&=&p_y,~~~{p'}_{z}=p_z, \\ {E'}&=&\gamma(E-\beta p_x c)=-p_x c\sinh\theta+E\cosh\theta, \\ \eea \be {E'}^2-(\vp'\cdot\vp') c^2=E^2-(\vp\cdot\vp) c^2=m^2 c^4,~~~~~~p=\beta E/c. \ee \end{itemize} \section{General relativity} \begin{itemize} \item Einstein Postulates: 1. Inertial mass is proportional to gravitational mass. (The proportionality constant is set equal to 1.) 2. The mass-energy density determines the metric tensor of space. Empty space is flat; the Lorentzian metric can be expressed as \be ds^2=-c^2dt^2+dx^2+dy^2+dz^2. \ee 3. A particle moving in a gravitational field defined by the distribution of mass-energy moves on a four-space geodesic satisfying the differential equations \be \frac{d^2x^\alpha}{ds^2}+ \Gamma^{\alpha}_{\mu\nu}\frac{dx^{\mu}}{ds}\frac{dx^{\nu}}{ds}=0. \ee 4. Light propagates along null geodesics, $ds=0$. \item Mass-Energy Density Tensor: \be T_{\mu\nu}=(\rho c^2+p) g_{\mu\sigma}g_{\nu\tau} \frac{dx^{\sigma}}{ds}\frac{dx^{\tau}}{ds}+p g_{\mu\nu}, \ee where $\rho$ is the matter density and $p$ is the pressure (energy density per unit volume): \be R_{\mu\nu}-\frac{1}{2}g_{\mu\nu}R+\Lambda g_{\mu\nu}=\frac{8\pi G}{c^4}T_{\mu\nu}. \ee $\Lambda$ is the comsological constant introduced by Einstein to provide a static solution for a non-empty universe: \be R_{\mu\nu}=\frac{8\pi G}{c^4}\left(T_{\mu\nu}-\frac{1}{2}g_{\mu\nu}T\right)+\Lambda g_{\mu\nu}. \ee \item Schwarzschild Line Element: Spherically symmetric external solution with a mass $m=Mc^2/G$ at the origin $(M=mG/c^2)$. In spherically symmetric coordinates: \be ds^2=-c^2(1-2M/r)dt^2+(1-2M/r)^{-1}dr^2+r^2(d\theta^2+\sin^2\theta d\phi^2). \ee In isotropic coordinates: \be ds^2=-c^2\left(\frac{1-M/(2R)}{1+M/(2R)}\right)^{2}dt^2+ (1+M/(2R))^{4}[dR^2+R^2(d\theta^2+\sin^2\theta d\phi^2)]. \ee \item Clock Transformation: TAI ({\it Temps Atomique International}) is a coordinate time scale whose unit is the SI second as realized in a geocentric frame by a cesium atomic clock at rest at sea-level on the rotating geoid. a. Transfer by portable clock: the coordinate time accumulated in moving the clock from point $A$ to point $B$ is \be \Delta t=\frac{2\omega}{c^2}A_E+\int^B_A \left[1-\frac{U(\vr)}{c^2}+\frac{v^2}{c^2}\right] d\tau, \ee where $\vr$ is the vector of the clock position in the earth frame with origin at the center of the geoid; $v$ is the speed of the clock in that frame; $\omega$ is the angular speed of rotation of the earth $(2\omega/c^2=1.623\times10^{-21} {\rm s/m^2})$; $A_E$ is the equatorial projection of the area swept out by $\vr$ in the earth frame, counted positive when the projected motion of $\vr$ is eastward; $d\tau$ is the proper time of the moving clock; and $U(\vr)$ is the gravitational potential relative to the geoid. b. Transfer by electromagnetic signal: the coordinate time interval be- tween emission (at point $A$) to reception (at point $B$) is \be \Delta t=\frac{2\omega}{c^2}A_E+\frac{1}{c}\int^B_A ds, \ee where $ds$ is the increment of proper length along the path, and $A_E$ is the equatorial projection of the triangle with vertices at $A$, $B$, and the center of the geoid. \end{itemize} \section{Cosmology} \begin{itemize} \item Hubble Constant: $H\equiv 100h {\rm km s^{-1} Mpc^{-1}}$, $0.350$. \item Critical Density: $\rho_c=3H^2/(8\pi G)$, the mass density required to close the uniform isotropic universe, $\rho_c\approx 1.88\times10^{-26}h^2 {\rm kg/m^3}$: \be \Omega=\rho/\rho_c,~~~\Omega_0=\rho_0/\rho_c. \ee From large-scale velocity measurements $(>100 {\rm kpc}=3\times10^5 {\rm ly})$, $0.1<\Omega<0.4$; approximately 95 percent of this density is apparently unobserved (``dark'') matter. \end{itemize} \section{General curvilinear spaces} The Einstein convention is used: the explicit summation sign is suppressed and an index appearing as both a subscript and a superscript is a dummy value to be summed over its range. \subsection{Metric tensor} The metric of an $n-$space is given by \be ds^2=g_{\mu\nu}dx^{\mu}dx^{\nu}, \ee where $dx^{\mu}$ are generalized coordinates (a set of numbers locating a point in the space) and $g_{\mu\nu}$ is the metric tensor: \be g^{\mu\sigma}g_{\sigma\nu}=g^{\mu}_{\nu}=\delta^{\mu}_{\nu}. \ee (The tensor $g^{\mu\nu}$ is the inverse of the tensor $g_{\mu\nu}$.) \begin{itemize} \item Raising and Lowering Indices: The dual vector is defined by $A_{\mu}=g_{\mu\nu}A^{\nu}$; in terms of the components of the displacement vector and its dual, the differential distance in the space is expressed as \be ds^2=dx_{\mu}dx^{\mu}. \ee For any tensor $T^{.\mu.\nu...}_{\alpha.\beta...}$, \be g_{\sigma\mu}T^{.\mu.\nu...}_{\alpha.\beta...}=T^{...\nu...}_{\alpha\sigma\beta...},~~~ g^{\gamma\alpha}T^{.\mu.\nu...}_{\alpha.\beta...}=T^{\gamma\mu.\nu...}_{..\beta...}. \ee \end{itemize} \subsection{Characterization of intrinsic curvature} \begin{itemize} \item Christoffel Symbols: $[\mu\nu;\sigma]=[\nu\mu;\sigma]$, \be [\mu\nu;\sigma]=\frac{1}{2}\left(\frac{\partial g_{\sigma\nu}}{\partial x^{\mu}}+ \frac{\partial g_{\mu\sigma}}{\partial x^{\nu}}- \frac{\partial g_{\mu\nu}}{\partial x^{\sigma}}\right), \ee \be \Gamma^{\sigma}_{\mu\nu}=[\mu\nu;\lambda] g^{\lambda\sigma}, \ee \be \Gamma^{a}_{a\mu}=\frac{\partial\sqrt{|g|}}{\partial x^{\mu}},~~~ g=\det(g_{\mu\nu}). \ee \item Covariant Differentiation: \be \frac{dA^{a...}_{b...}}{dt}\equiv A^{a...}_{b...;c}\frac{dx^{c}}{dt}, \ee \be A^{a}_{;c}=\frac{\partial A^a}{\partial x^c}+\Gamma^{a}_{cd}A^{d}, \ee \be A_{b;c}=\frac{\partial A_b}{\partial x^c}-\Gamma^{d}_{bc}A_{d}, \ee \bea T^{ab...}_{cd...;s}&=&\frac{\partial T^{ab...}_{cd...}}{\partial x^s}+ \Gamma^{a}_{rs}T^{rb...}_{cd...}+\Gamma^{b}_{rs}T^{ar...}_{cd...}+\cdots \nn &-&\Gamma^{r}_{cs}T^{ab...}_{rd...}-\Gamma^{r}_{ds}T^{ab...}_{cr...}-\cdots, \eea \be g_{ab...;s}=\frac{\partial g_{ab}}{\partial x^s}- \Gamma^{r}_{as}g_{rb}-\Gamma^{r}_{sb}g_{ar}\equiv 0. \ee This last condition is the defining relation for $\Gamma^{s}_{ab}$. \item Riemann-Christoffel Tensor: Covariant differentiation is non-commutative if the space is not flat. \be A_{c;ba}-A_{c;ab}=R^{d}{}_{cba}A{d}, \ee \be R^{d}{}_{cba}=\frac{\partial \Gamma^{d}_{ac}}{\partial x^b}- \frac{\partial \Gamma^{d}_{bc}}{\partial x^a}+ \Gamma^{e}_{ac}\Gamma^{d}_{eb}-\Gamma^{e}_{bc}\Gamma^{d}_{ea}, \ee \be R^{d}{}_{abc}+R^{d}{}_{bca}+R^{d}{}_{cab}=0, \ee \be R_{dcba}=g_{de}R^{e}{}_{cba}=-R_{cdba}=R_{abcd}. \ee As a result of these symmetries, only $n^2(n^2-1)/12$ of the $n^4$ components in $n-$space are independent. \item Ricci Tensor: \be R_{ca}=R^{d}{}_{cda}=\frac{1}{\sqrt{|g|}}\frac{\partial}{\partial x^d} \left(\sqrt{|g|}\Gamma^{d}_{ac}\right)- \frac{\partial^2 \ln\sqrt{|g|}}{\partial x^a \partial x^c}- \Gamma^{d}_{ae}\Gamma^{e}_{dc}=R_{ac}. \ee The choice of contraction is essentially unique since $R^{d}{}_{dbc}=0$ and $R^{d}{}_{cbd}=-R^{d}{}_{cdb}$. The contraction of the Ricci tensor: $R=R^{a}_{a}=g^{ac}R_{ac}$ is the mean curvature (the {\it Gaussian} curvature of the surface for $n=2$). \end{itemize} \end{document}