%
%LaTeX2.09 %Kiyoshi Shiraishi Oct. 05, 1997 \documentstyle[12pt]{article} \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} \newcommand{\bea}{\begin{eqnarray}} \newcommand{\eea}{\end{eqnarray}} \newcommand{\nn}{\nonumber \\} \newcommand{\vnabla}{{\bf \nabla}} \newcommand{\vsigma}{{\bf \sigma}} \newcommand{\vA}{{\bf A}} %vector potential \newcommand{\vB}{{\bf B}} % \newcommand{\vD}{{\bf D}} \newcommand{\vE}{{\bf E}} \newcommand{\vF}{{\bf F}} \newcommand{\vg}{{\bf g}} \newcommand{\vH}{{\bf H}} \newcommand{\vI}{{\bf I}} \newcommand{\vi}{{\bf i}} \newcommand{\vJ}{{\bf J}} \newcommand{\vj}{{\bf j}} \newcommand{\vM}{{\bf M}} \newcommand{\vP}{{\bf P}} \newcommand{\vS}{{\bf S}} \newcommand{\vs}{{\bf s}} \newcommand{\vv}{{\bf v}} \newcommand{\vx}{{\bf x}} %%%%%%%%%%%%%%% %\hfill {ver. 1.0} %%%%%%%%%%%%%%% \title{ Electromagnetism } \author{Based on Stevens' book, Kiyoshi Shiraishi } \date{ver. 1.0} \begin{document} \maketitle \begin{abstract} Yamaguchi University \end{abstract} \section{mathematical identities} %%%%%%%%%%%%%%%%%%%% \begin{itemize} \item rot grad vanishes \be \vnabla\times\vnabla\phi=0 \ee \item div rot vanishes \be \vnabla\cdot\vnabla\times\vA=0 \ee \item Gauss' theorem \be \int_V \vnabla\cdot\vE ~d^3\vx=\int_S \vE\cdot d\vsigma \ee \item Stokes' theorem \be \int_S \vnabla\times\vE\cdot d\vsigma=\oint_C \vE\cdot d\vs \ee \end{itemize} \section{The electrostatic field} %%%%%%%%%%%%%%%%%%%% \begin{itemize} \item the force $\vF$ exerted on a test particle with charge $q$ in the electric field $\vE$ \be \vF=q\vE \ee \item Coulomb's law \be F=\frac{1}{4\pi\epsilon_{0}}\frac{qq'}{r^2} \ee \be \vE (\vx)=\frac{1}{4\pi\epsilon_{0}}\frac{q~\vx}{|\vx|^3} \ee \be \vE (\vx)=\frac{1}{4\pi\epsilon_{0}}\sum_{i} q_{i} \frac{\vx-\vx_{i}}{|\vx-\vx_{i}|^3} \ee \item generalized Coulomb's law \be \vE (\vx)=\frac{1}{4\pi\epsilon_{0}}\int \rho(\vx')\frac{\vx-\vx'}{|\vx-\vx'|^3} d^3\vx' \ee \be \vnabla\frac{1}{|\vx-\vx'|}=-\frac{\vx-\vx'}{|\vx-\vx'|^3} \ee \be \vE (\vx)=-\frac{1}{4\pi\epsilon_{0}}\vnabla\int \frac{\rho(\vx')}{|\vx-\vx'|} d^3\vx' \ee \item the scalar potential \be \phi (\vx)=\frac{1}{4\pi\epsilon_{0}}\int \frac{\rho(\vx')}{|\vx-\vx'|} d^3\vx' \ee \be \vE (\vx)=-\vnabla\phi (\vx) \ee \be \vnabla\times\vE=-\vnabla\times\vnabla\phi=0 \ee \item Gauss'law \be \int_S \vE\cdot d\vsigma=\frac{1}{\epsilon_{0}}\int \rho (\vx) ~d^3\vx \ee \be \int \vnabla\cdot\vE ~d^3\vx=\frac{1}{\epsilon_{0}}\int \rho (\vx) ~d^3\vx \ee \item differential Coulomb's law \be \vnabla\cdot\vE=\frac{1}{\epsilon_{0}}\rho \ee \item equations for the electrostatic field \bea \vnabla\cdot\vE&=&\frac{1}{\epsilon_{0}}\rho \\ \vnabla\times\vE&=&0 \eea \item Poisson's equation \be \nabla^2 \phi=-\frac{1}{\epsilon_{0}}~\rho \ee \end{itemize} \section{The magnetostatic field}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{itemize} \item magnetic monopoles do not exist \be \vnabla\cdot\vB=0 \ee \item Amp\`ere's law \be \oint_C \vB\cdot d\vs=\mu_{0} \vI \ee \be \oint \vB\cdot d\vs=\mu_{0} \vI=\mu_{0} \int \vj\cdot d\vsigma \ee \be \int_S \vnabla\times\vB\cdot d\vsigma=\mu_{0}\int_S \vj\cdot d\vsigma \ee \be \vnabla\times\vB=\mu_{0} \vj \ee \item equations for the magnetostatic field \bea \vnabla\times\vB&=&\mu_{0} \vj \\ \vnabla\cdot\vB&=&0 \eea \end{itemize} \section{The electromagnetic field}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{itemize} \item Faraday's law \be \oint_C \vE\cdot d\vs=-\frac{\partial}{\partial t} \int_S \vB\cdot d\vsigma \ee \be \oint_C \vE\cdot d\vs=\int_S \vnabla\times\vE\cdot d\vsigma= -\frac{\partial}{\partial t} \int_S \vB\cdot d\vsigma \ee \be \vnabla\times\vE=-\frac{\partial}{\partial t}\vB \ee \item continuity equation \be \frac{\partial\rho}{\partial t}+\vnabla\cdot\vj=0 \ee \be \int_V \vnabla\cdot\vj ~d^3\vx=\int_S \vj\cdot d\vsigma= -\frac{\partial}{\partial t}\int_V \rho(\vx) ~d^3\vx \ee \item to maintain the charge conservation \be \vnabla\times\vB=\mu_{0} \vJ \ee \be \vnabla\cdot(\vnabla\times\vB)=0=\mu_{0} \vnabla\cdot\vJ \ee \be \vnabla\cdot\vJ=\vnabla\cdot\vj+\frac{\partial\rho}{\partial t}=0 \ee \be \frac{\partial\rho}{\partial t}= \frac{\partial}{\partial t}\epsilon_{0}\vnabla\cdot\vE \ee \be \vJ=\vj+\epsilon_{0}\frac{\partial}{\partial t}\vE \ee \be \vnabla\times\vB=\mu_{0} \vj+\epsilon_{0}\mu_{0}\frac{\partial}{\partial t}\vE \ee \item Maxwell's equations \begin{tabular}{|ll|} \hline $\vnabla\times\vE=-\frac{\partial}{\partial t}\vB$ & {\small Faraday's law}\\ $\vnabla\times\vB=\mu_{0} \vj+\frac{1}{c^2}\frac{\partial}{\partial t}\vE$ & {\small Amp\`ere's law and conservation of charges}\\ $\vnabla\cdot\vE=\frac{\rho}{\epsilon_{0}}$ & {\small Coulomb's law}\\ $\vnabla\cdot\vB=0$ & {\small No magnetic monopoles}\\ \hline \end{tabular} where $c^2=\frac{1}{\epsilon_{0}\mu_{0}}$. \end{itemize} \section{Gauge transformations}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{itemize} \item vector potential \be \vnabla\cdot\vB=0 \Rightarrow \vB=\vnabla\times\vA \ee \item scalar potential \be \vnabla\times\vE+\frac{\partial}{\partial t}\vB=0 \ee \be \vnabla\times(\vE+\frac{\partial}{\partial t}\vA)=0 \Rightarrow -\vnabla\phi=\vE+\frac{\partial}{\partial t}\vA \ee \item gauge transformations \be \vA \rightarrow \vA'=\vA+\vnabla\lambda \ee \be \vB \rightarrow \vB'=\vnabla\times(\vA+\vnabla\lambda)=\vB \ee \be \phi \rightarrow \phi'=\phi-\frac{\partial}{\partial t}\lambda \ee \be \vE \rightarrow \vE'=-\vnabla\left(\phi-\frac{\partial}{\partial t}\lambda\right) -\frac{\partial}{\partial t}(\vA+\vnabla\lambda)=\vE \ee \item summary of definition of potentials \begin{tabular}{|c|} \hline $\vB=\vnabla\times\vA$ \\ $\vE=-\vnabla\phi-\frac{\partial}{\partial t}\vA$ \\ \hline \end{tabular} \item summary of gauge transformations \begin{tabular}{|c|} \hline $\vA \rightarrow \vA+\vnabla\lambda$ \\ $\phi \rightarrow \phi-\frac{\partial}{\partial t}\lambda$ \\ \hline \end{tabular} \end{itemize} \section{Maxwell's equations for the Lorentz gauge}%%%%%%%%%%% \begin{itemize} \item Amp\`ere's law and conservation of charges \bea \vnabla\times\vB&=&\vnabla\times(\vnabla\times\vA)= \vnabla(\vnabla\cdot\vA)-\nabla^2\vA \nn &=&\mu_{0} \vj+\frac{1}{c^2}\frac{\partial\vE}{\partial t}= \mu_{0} \vj+\frac{1}{c^2}\frac{\partial}{\partial t} \left(-\vnabla\phi-\frac{\partial\vA}{\partial t}\right) \eea \be -\nabla^2\vA+\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\vA+ \vnabla\cdot\left(\vnabla\cdot\vA+\frac{1}{c^2}\frac{\partial\phi}{\partial t}\right)= \mu_{0}\vj \ee \item Gauss' law \be \vnabla\cdot\vE=-\vnabla\cdot\left(\vnabla\phi+\frac{\partial\vA}{\partial t}\right)= \frac{\rho}{\epsilon_{0}} \ee \be \nabla^2\phi-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\phi+ \frac{\partial}{\partial t} \left(\vnabla\cdot\vA+\frac{1}{c^2}\frac{\partial\phi}{\partial t}\right)= -\frac{\rho}{\epsilon_{0}} \ee \item the Lorentz gauge \be \vnabla\cdot\vA+\frac{1}{c^2}\frac{\partial\phi}{\partial t}=0 \ee \item Maxwell's equations for the Lorentz gauge \bea \nabla^2\vA-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\vA&=&-\mu_{0}\vj \\ \nabla^2\phi-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\phi&=&-\frac{\rho}{\epsilon_{0}} \eea \item wave equation for the magnetic field in vacua ($\rho=0$, $\vj=0$) for the Lorentz gauge \be \nabla^2\vB-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\vB=0 \ee \item wave equation for the electric field in vacua ($\rho=0$, $\vj=0$) for the Lorentz gauge \be \nabla^2\vE-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\vE=0 \ee \end{itemize} \section{The macroscopic Maxwell's equations}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{itemize} \item the electrostatic field in material media \be \epsilon_{0}\vnabla\cdot\vE=\rho \stackrel{material~media}{\Rightarrow} \epsilon_{0}\vnabla\cdot\vE=\rho+\rho_{i}(\vE) \ee \item polarization \be \vnabla\cdot\vP=-\rho_{i} \ee \be \vnabla\cdot(\epsilon_{0}\vE+\vP)=\vnabla\cdot\vD=\rho \ee \item electric displacement \be \vD=\epsilon_{0}\vE+\vP \ee \item macroscopic differential Coulomb's law \be \vnabla\cdot\vD=\rho \ee \item the electric susceptibility $\chi$ \be \vP(\vE)=\chi\vE \ee \be \vD=\epsilon_{0}\vE+\vP=\epsilon_{0}\vE+\chi\vE= (\epsilon_{0}+\chi)\vE\equiv \epsilon\vE \ee \item the magnetostatic field in material media \be \vnabla\times\vB=\mu_{0} \vj \stackrel{material~media}{\Rightarrow} \vnabla\times\vB=\mu_{0} (\vj+\vj_{i}(\vB)) \ee \item magnetization \be \vnabla\times\vM= \vj_{i} \ee \be \vnabla\times(\vB-\mu_{0}\vM)=\vnabla\times\mu_{0}\vH=\mu_{0} \vj \ee \item $H$ field \be \vH\equiv\frac{1}{\mu_{0}}\vB-\vM \ee \item macroscopic differential Amp\`ere's law \be \vnabla\times\vH=\vj \ee \be \vB=\mu\vH \ee \item the macroscopic Maxwell's equations \begin{tabular}{|ll|} \hline $\vnabla\times\vE=-\frac{\partial}{\partial t}\vB$ & {\small Faraday's law}\\ $\vnabla\times\vH=\vj+\frac{\partial}{\partial t}\vD$ & {\small Amp\`ere's law and conservation of charges}\\ $\vnabla\cdot\vD=\rho$ & {\small Coulomb's law}\\ $\vnabla\cdot\vB=0$ & {\small No magnetic monopoles}\\ \hline \end{tabular} \end{itemize} \section{Lorentz force}%%%%%%%%%%% \begin{itemize} \item Lorentz force \be \vF=q (\vE+\vv\times\vB) \ee \end{itemize} \section{Conservation of energy and momentum}%%%%%%%%%%% \begin{itemize} \item the rate of doing work for a charge $q$ \be W=q\vv\cdot\vE \ee \item for a continuous distribution of charge and current in $V$ \be W=\int_V \vj\cdot\vE ~d^3\vx \ee \bea W&=&\int_V \left(\vnabla\times\vH-\frac{\partial}{\partial t}\vD\right)\cdot\vE ~d^3\vx \nn &=&\int_V \left[\left(\vnabla\times\vE\right)\cdot\vH- \left(\frac{\partial}{\partial t}\vD\right)\cdot\vE\right] ~d^3\vx- \int_S (\vE\times\vH)\cdot d\vsigma \nn &=&-\int_V \left[\left(\frac{\partial}{\partial t}\vB\right)\cdot\vH+ \left(\frac{\partial}{\partial t}\vD\right)\cdot\vE\right] ~d^3\vx- \int_S (\vE\times\vH)\cdot d\vsigma \nn &=&-\frac{1}{2}\frac{\partial}{\partial t}\int_V \left[\vE\cdot\vD+\vB\cdot\vH\right] ~d^3\vx- \int_S (\vE\times\vH)\cdot d\vsigma \eea here we have used \be \vnabla\cdot(\vE\times\vH)=\vH\cdot(\vnabla\times\vE)-\vE\cdot(\vnabla\times\vH) \ee \item the energy density of the electromagenetic field \be u=-\frac{1}{2}\left(\vE\cdot\vD+\vB\cdot\vH\right) \ee \item the Poynting vector \be \vS=\vE\times\vH \ee \item the electromagnetic momentum density \be \vg=\vS/c^2 \ee \item conservation of energy and momentum \be \frac{\partial}{\partial t}\int_V u ~d^3\vx+\int_S \vS\cdot d\vsigma+W=0 \ee \item differential conservation law \be \frac{\partial u}{\partial t}+\vnabla\cdot\vS+\vj\cdot\vE=0 \ee \end{itemize} \end{document}