%
%LaTeX2.09 %Kiyoshi Shiraishi Aug. 1997 \documentstyle{article} \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} \newcommand{\bea}{\begin{eqnarray}} \newcommand{\eea}{\end{eqnarray}} \newcommand{\nn}{\nonumber \\} \begin{document} We assume the metric: \bea ds^2&=&-N^2 dt^2+\Lambda^2 (d\chi+\beta dt)^2+r^2 d\Omega^{2}_{2} \\ &=&\eta_{AB}e^A\otimes e^B, \eea where $A, B=0, 1, 2, 3$ and $\eta_{AB}=diag.(-1,1,1,1)$. $N, \Lambda$ and $r$ are functions of $t$ and $\chi$. Here we can see \bea e^0&=&N dt, \\ e^1&=&\Lambda (d\chi +\beta dt), \\ e^a&=&r \tilde{e}^a , \eea where $a=2, 3$ and $d\tilde{e}^a+\tilde{\omega}^{a}{}_{b}\wedge\tilde{e}^b=0$. Taking the exterior derivative of these, we get \bea de^0&=&N'd\chi\wedge dt=\frac{N'}{N\Lambda}e^1\wedge e^0, \\ de^1&=&\dot{\Lambda}dt\wedge d\chi+\Lambda'd\chi\wedge \beta dt +\Lambda \beta'd\chi\wedge dt, \nn &=& \frac{(\dot{\Lambda}-(\Lambda\beta)')}{N\Lambda}e^0\wedge e^1 \\ de^a&=&\dot{r}dt\wedge \tilde{e}^a+r'd\chi\wedge \tilde{e}^a+rd\tilde{e}^a \nn &=&\frac{\dot{r}}{rN}e^0\wedge e^a+\frac{r'}{r\Lambda}e^1\wedge e^a- \frac{r'\beta}{rN}e^0\wedge e^a-\tilde{\omega}^{a}{}_{b}\wedge e^b . \eea Comparing these expressions with $de^A+\omega^{A}{}_{B}\wedge e^B=0$, we find \bea \omega^{0}{}_{1}&=&\frac{N'}{N\Lambda}e^0-K^{\chi}_{\chi}e^1, \\ \omega^{0}{}_{a}&=&-K^{\theta}_{\theta}e^a, \\ \omega^{1}{}_{a}&=&-\frac{r'}{r\Lambda}e^a, \\ \omega^{a}{}_{b}&=&\tilde{\omega}^{a}{}_{b} , \eea where \bea K^{\chi}_{\chi}&=&\frac{(-\dot{\Lambda}+(\Lambda\beta)')}{N\Lambda}, \\ K^{\theta}_{\theta}&=&\frac{-\dot{r}+r'\beta}{Nr}. \eea %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Using these, we can calculate the curvature 2-form \be \Theta^{A}{}_{B}=d\omega^{A}{}_{B}+\omega^{A}{}_{C}\wedge\omega^{C}{}_{B} \ee as follows: \bea \Theta^{0}{}_{1}&=&d\omega^{0}{}_{1}+\omega^{0}{}_{a}\wedge\omega^{a}{}_{1}, \label{01}\\ \Theta^{0}{}_{a}&=&d\omega^{0}{}_{a}+\omega^{0}{}_{1}\wedge\omega^{1}{}_{a} +\omega^{0}{}_{b}\wedge\omega^{b}{}_{a}, \label{0a}\\ \Theta^{1}{}_{a}&=&d\omega^{1}{}_{a}+\omega^{1}{}_{0}\wedge\omega^{0}{}_{a} +\omega^{1}{}_{b}\wedge\omega^{b}{}_{a}, \label{1a}\\ \Theta^{a}{}_{b}&=&d\omega^{a}{}_{b}+\omega^{a}{}_{0}\wedge\omega^{0}{}_{b} +\omega^{a}{}_{1}\wedge\omega^{1}{}_{b}+ \omega^{a}{}_{c}\wedge\omega^{c}{}_{b}. \label{ab} \eea {}From (\ref{01}), we obtain \bea \Theta^{0}{}_{1}&=&d\omega^{0}{}_{1} \nn &=&\left(\frac{N'}{N\Lambda}\right)'d\chi\wedge e^0 +\frac{N'}{N\Lambda}de^0 -\dot{K}^{\chi}_{\chi}dt\wedge \Lambda d\chi -{(K^{\chi}_{\chi})}'d\chi\wedge \Lambda\beta dt -K^{\chi}_{\chi}de^1 \nn &=&\frac{1}{\Lambda}\left(\frac{N'}{N\Lambda}\right)'e^1\wedge e^0 +\left(\frac{N'}{N\Lambda}\right)^2 e^1\wedge e^0 \nn & &-\frac{1}{N}\dot{K}^{\chi}_{\chi}e^0\wedge e^1 -\frac{\beta}{N}{(K^{\chi}_{\chi})}'e^1\wedge e^0 +\left(K^{\chi}_{\chi}\right)^2 e^0\wedge e^1 \nn &=&\left[-\frac{1}{\Lambda}\left(\frac{N'}{N\Lambda}\right)' -\left(\frac{N'}{N\Lambda}\right)^2 -\frac{1}{N}\dot{K}^{\chi}_{\chi} +\frac{\beta}{N}{(K^{\chi}_{\chi})}' +\left(K^{\chi}_{\chi}\right)^2 \right] e^0\wedge e^1. \eea {}From (\ref{0a}), we obtain \bea \Theta^{0}{}_{a}&=&d\omega^{0}{}_{a}+\omega^{0}{}_{1}\wedge\omega^{1}{}_{a} +\omega^{0}{}_{b}\wedge\omega^{b}{}_{a} \nn &=&-\dot{K}^{\theta}_{\theta}dt\wedge e^a -\left(K^{\theta}_{\theta}\right)'d\chi\wedge e^a -K^{\theta}_{\theta}de^a \nn & &+\left(\frac{N'}{N\Lambda}e^0-K^{\chi}_{\chi}e^1\right)\wedge \left(-\frac{r'}{r\Lambda}\right)e^a +\left(-K^{\theta}_{\theta}e^b\right)\wedge \tilde{\omega}^{b}{}_{a} \nn &=&-\frac{1}{N}\dot{K}^{\theta}_{\theta}e^0\wedge e^a -\left(K^{\theta}_{\theta}\right)' \left(\frac{1}{\Lambda}e^1-\frac{\beta}{N}e^0\right)\wedge e^a \nn & &-K^{\theta}_{\theta}\left(-K^{\theta}_{\theta}e^0\wedge e^a+ \frac{r'}{r\Lambda}e^1\wedge e^a-\tilde{\omega}^{a}{}_{b}\wedge e^b \right) \nn & &+\left(\frac{N'}{N\Lambda}e^0-K^{\chi}_{\chi}e^1\right)\wedge \left(-\frac{r'}{r\Lambda}\right)e^a +\left(-K^{\theta}_{\theta}e^b\right)\wedge \tilde{\omega}^{b}{}_{a} \nn &=&\left[-\frac{1}{N}\dot{K}^{\theta}_{\theta}+ \frac{\beta}{N}\left(K^{\theta}_{\theta}\right)'+ \left(K^{\theta}_{\theta}\right)^2- \frac{r'}{r\Lambda}\frac{N'}{N\Lambda}\right]e^0\wedge e^a \nn & &+\left[-\frac{1}{\Lambda}\left(K^{\theta}_{\theta}\right)' -(K^{\theta}_{\theta}-K^{\chi}_{\chi})\frac{r'}{r\Lambda} \right]e^1\wedge e^a \eea {}From (\ref{1a}), we obtain \bea \Theta^{1}{}_{a}&=&d\omega^{1}{}_{a}+\omega^{1}{}_{0}\wedge\omega^{0}{}_{a} +\omega^{1}{}_{b}\wedge\omega^{b}{}_{a} \nn &=&-\left(\frac{r'}{r\Lambda}\right)^{.}dt\wedge e^a -\left(\frac{r'}{r\Lambda}\right)'d\chi\wedge e^a -\frac{r'}{r\Lambda}de^a \nn & &+\left(\frac{N'}{N\Lambda}e^0-K^{\chi}_{\chi}e^1\right)\wedge \left(-K^{\theta}_{\theta}e^a\right)+ \left(-\frac{r'}{r\Lambda}e^b\right)\wedge \tilde{\omega}^{b}{}_{a} \nn &=&-\frac{1}{N}\left(\frac{r'}{r\Lambda}\right)^{\cdot}e^0\wedge e^a -\left(\frac{r'}{r\Lambda}\right)' \left(\frac{1}{\Lambda}e^1-\frac{\beta}{N}e^0\right)\wedge e^a \nn & &-\frac{r'}{r\Lambda}\left(-K^{\theta}_{\theta}e^0\wedge e^a+ \frac{r'}{r\Lambda}e^1\wedge e^a-\tilde{\omega}^{a}{}_{b}\wedge e^b \right) \nn & &+\left(\frac{N'}{N\Lambda}e^0-K^{\chi}_{\chi}e^1\right)\wedge \left(-K^{\theta}_{\theta}e^a\right)+ \left(-\frac{r'}{r\Lambda}e^b\right)\wedge \tilde{\omega}^{b}{}_{a} \nn &=&\left[-\frac{1}{\Lambda}\left(\frac{r'}{r\Lambda}\right)' -\left(\frac{r'}{r\Lambda}\right)^2+K^{\chi}_{\chi}K^{\theta}_{\theta} \right]e^1\wedge e^a \nn & &+\left[-\frac{1}{N}\left(\frac{r'}{r\Lambda}\right)^{\bullet} +\frac{\beta}{N}\left(\frac{r'}{r\Lambda}\right)'+ K^{\theta}_{\theta}\left(\frac{r'}{r\Lambda}-\frac{N'}{N\Lambda} \right)\right]e^0\wedge e^a . \eea {}From (\ref{ab}), we obtain \bea \Theta^{a}{}_{b}&=&d\omega^{a}{}_{b}+\omega^{a}{}_{0}\wedge\omega^{0}{}_{b} +\omega^{a}{}_{1}\wedge\omega^{1}{}_{b} +\omega^{a}{}_{c}\wedge\omega^{c}{}_{b}\nn &=&d\tilde{\omega}^{a}{}_{b}+\tilde{\omega}^{a}{}_{c}\wedge \tilde{\omega}^{c}{}_{b} \nn & &+\left(K^{\theta}_{\theta}\right)^2 e^a\wedge e^b -\left(\frac{r'}{r\Lambda}\right)^2 e^a\wedge e^b \nn &=&\tilde{\Theta}^{a}{}_{b} +\left[\left(K^{\theta}_{\theta}\right)^2 -\left(\frac{r'}{r\Lambda}\right)^2\right] e^a\wedge e^b . \eea $\{\tilde{e}^a\}$'s form a unit sphere, thus $\tilde{\Theta}^a{}_b= \tilde{e}^a\wedge \tilde{e}^b$. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Comparing the coefficients with \be \Theta^{A}{}_{B}=\frac{1}{2}R^{A}{}_{BCD}e^{C}\wedge e^{D}, \ee we find \bea R^{01}{}_{01}&=&-\frac{1}{\Lambda}\left(\frac{N'}{N\Lambda}\right)' -\left(\frac{N'}{N\Lambda}\right)^2 -\frac{1}{N}\dot{K}^{\chi}_{\chi} +\frac{\beta}{N}{(K^{\chi}_{\chi})}' +\left(K^{\chi}_{\chi}\right)^2 \\ R^{0a}{}_{0b}&=&\delta^{a}_{b}\left[-\frac{1}{N}\dot{K}^{\theta}_{\theta}+ \frac{\beta}{N}\left(K^{\theta}_{\theta}\right)'+ \left(K^{\theta}_{\theta}\right)^2- \frac{r'}{r\Lambda}\frac{N'}{N\Lambda}\right] \\ R^{1a}{}_{1b}&=&\delta^{a}_{b}\left[-\frac{1}{\Lambda}\left(\frac{r'}{r\Lambda}\right)' -\left(\frac{r'}{r\Lambda}\right)^2+K^{\chi}_{\chi}K^{\theta}_{\theta} \right] \\ R^{0a}{}_{1b}&=&-\frac{1}{\Lambda}\left(K^{\theta}_{\theta}\right)' -(K^{\theta}_{\theta}-K^{\chi}_{\chi})\frac{r'}{r\Lambda} \nn &=&-\left[-\frac{1}{N}\left(\frac{r'}{r\Lambda}\right)^{\bullet} +\frac{\beta}{N}\left(\frac{r'}{r\Lambda}\right)'+ K^{\theta}_{\theta}\left(\frac{r'}{r\Lambda}-\frac{N'}{N\Lambda} \right)\right] \\ R^{ab}{}_{cd}&=&(\delta^{a}_{c}\delta^{b}_{d}-\delta^{a}_{d}\delta^{b}_{c}) \left[\frac{1}{r^2}+\left(K^{\theta}_{\theta}\right)^2 -\left(\frac{r'}{r\Lambda}\right)^2\right] \eea The Ricci curvatures ($R^{A}_{B}=R^{AC}{}_{BC}$) are given as \bea R^{0}_{0}&=&-\frac{1}{\Lambda}\left(\frac{N'}{N\Lambda}\right)' -\left(\frac{N'}{N\Lambda}\right)^2 -\frac{1}{N}\dot{K}^{\chi}_{\chi} +\frac{\beta}{N}{(K^{\chi}_{\chi})}' +\left(K^{\chi}_{\chi}\right)^2 \nn & &+2\left[-\frac{1}{N}\dot{K}^{\theta}_{\theta}+ \frac{\beta}{N}\left(K^{\theta}_{\theta}\right)'+ \left(K^{\theta}_{\theta}\right)^2- \frac{r'}{r\Lambda}\frac{N'}{N\Lambda}\right] \\ R^{1}_{1}&=&-\frac{1}{\Lambda}\left(\frac{N'}{N\Lambda}\right)' -\left(\frac{N'}{N\Lambda}\right)^2 -\frac{1}{N}\dot{K}^{\chi}_{\chi} +\frac{\beta}{N}{(K^{\chi}_{\chi})}' +\left(K^{\chi}_{\chi}\right)^2 \nn & &+2\left[-\frac{1}{\Lambda}\left(\frac{r'}{r\Lambda}\right)' -\left(\frac{r'}{r\Lambda}\right)^2+K^{\chi}_{\chi}K^{\theta}_{\theta} \right] \\ R^{a}_{b}&=&\delta^{a}_{b}\left\{ \left[\frac{1}{r^2}+\left(K^{\theta}_{\theta}\right)^2 -\left(\frac{r'}{r\Lambda}\right)^2\right] \right.\nn & &+\left[-\frac{1}{N}\dot{K}^{\theta}_{\theta}+ \frac{\beta}{N}\left(K^{\theta}_{\theta}\right)'+ \left(K^{\theta}_{\theta}\right)^2- \frac{r'}{r\Lambda}\frac{N'}{N\Lambda}\right] \nn & &\left.+\left[-\frac{1}{\Lambda}\left(\frac{r'}{r\Lambda}\right)' -\left(\frac{r'}{r\Lambda}\right)^2+K^{\chi}_{\chi}K^{\theta}_{\theta} \right] \right\}\\ R^{0}_{1}&=&-\frac{2}{\Lambda}\left(K^{\theta}_{\theta}\right)' -(K^{\theta}_{\theta}-K^{\chi}_{\chi})\frac{2r'}{r\Lambda} \eea The scalar curvature is \bea R&=&2\left[-\frac{1}{\Lambda}\left(\frac{N'}{N\Lambda}\right)' -\left(\frac{N'}{N\Lambda}\right)^2 -\frac{1}{N}\dot{K}^{\chi}_{\chi} +\frac{\beta}{N}{(K^{\chi}_{\chi})}' +\left(K^{\chi}_{\chi}\right)^2 \right]\nn & &+4\left[-\frac{1}{N}\dot{K}^{\theta}_{\theta}+ \frac{\beta}{N}\left(K^{\theta}_{\theta}\right)'+ \left(K^{\theta}_{\theta}\right)^2- \frac{r'}{r\Lambda}\frac{N'}{N\Lambda}\right] \nn & &+4\left[-\frac{1}{\Lambda}\left(\frac{r'}{r\Lambda}\right)' -\left(\frac{r'}{r\Lambda}\right)^2+K^{\chi}_{\chi}K^{\theta}_{\theta} \right] \nn & &+2 \left[\frac{1}{r^2}+\left(K^{\theta}_{\theta}\right)^2 -\left(\frac{r'}{r\Lambda}\right)^2\right] \eea Then the components of the Einstein tensor ($G^{A}_B{}=R^{A}_{B}-\frac{1}{2}\delta^{A}_{B}R$) are written as \bea G^{0}_{0}&=&-2\left[-\frac{1}{\Lambda}\left(\frac{r'}{r\Lambda}\right)' -\left(\frac{r'}{r\Lambda}\right)^2+K^{\chi}_{\chi}K^{\theta}_{\theta} \right] \nn & &- \left[\frac{1}{r^2}+\left(K^{\theta}_{\theta}\right)^2 -\left(\frac{r'}{r\Lambda}\right)^2\right] , \\ G^{1}_{1}&=&-2\left[-\frac{1}{N}\dot{K}^{\theta}_{\theta}+ \frac{\beta}{N}\left(K^{\theta}_{\theta}\right)'+ \left(K^{\theta}_{\theta}\right)^2- \frac{r'}{r\Lambda}\frac{N'}{N\Lambda}\right] \nn & &- \left[\frac{1}{r^2}+\left(K^{\theta}_{\theta}\right)^2 -\left(\frac{r'}{r\Lambda}\right)^2\right] , \\ G^{a}_{b}&=&\delta^{a}_{b}\left\{ -\left[-\frac{1}{\Lambda}\left(\frac{N'}{N\Lambda}\right)' -\left(\frac{N'}{N\Lambda}\right)^2 -\frac{1}{N}\dot{K}^{\chi}_{\chi} +\frac{\beta}{N}{(K^{\chi}_{\chi})}' +\left(K^{\chi}_{\chi}\right)^2 \right]\right. \nn & &-\left[-\frac{1}{N}\dot{K}^{\theta}_{\theta}+ \frac{\beta}{N}\left(K^{\theta}_{\theta}\right)'+ \left(K^{\theta}_{\theta}\right)^2- \frac{r'}{r\Lambda}\frac{N'}{N\Lambda}\right] \nn & &\left.-\left[-\frac{1}{\Lambda}\left(\frac{r'}{r\Lambda}\right)' -\left(\frac{r'}{r\Lambda}\right)^2+K^{\chi}_{\chi}K^{\theta}_{\theta} \right]\right\} , \\ G^{0}_{1}&=&-\frac{2}{\Lambda}\left(K^{\theta}_{\theta}\right)' -(K^{\theta}_{\theta}-K^{\chi}_{\chi})\frac{2r'}{r\Lambda} . \eea %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% We can rewrite these as \bea G^{0}_{0}&=&-K^{\theta}_{\theta}\left(K^{\theta}_{\theta}+2K^{\chi}_{\chi}\right) -\frac{1}{r^2r'}\left[r\left(1-\left(\frac{r'}{\Lambda} \right)^2\right)\right]' , \\ G^{1}_{1}&=&-3\left(K^{\theta}_{\theta}\right)^2+ \frac{2}{N}\left[\dot{K}^{\theta}_{\theta}- \beta\left(K^{\theta}_{\theta}\right)'\right]+ \frac{2r'N'}{rN\Lambda^2}- \frac{1}{r^2}\left[1-\left(\frac{r'}{\Lambda}\right)^2\right] , \\ G^{a}_{b}&=&\delta^{a}_{b}\left\{ -\left(K^{\chi}_{\chi}\right)^2 -K^{\chi}_{\chi}K^{\theta}_{\theta} -\left(K^{\theta}_{\theta}\right)^2+ \frac{1}{N}\left[\dot{K}^{\chi}_{\chi}+ \dot{K}^{\theta}_{\theta}- \beta\left({(K^{\chi}_{\chi})}'+\left(K^{\theta}_{\theta}\right)' \right)\right] \right.\nn & &\left.+\frac{1}{N\Lambda}\left(\frac{N'}{\Lambda}\right)'+ \frac{r'N'}{rN\Lambda^2}+ \frac{1}{r\Lambda}\left(\frac{r'}{\Lambda}\right)' \right\} , \\ G^{0}_{1}&=&-\frac{2}{r\Lambda}\left(rK^{\theta}_{\theta}\right)' +K^{\chi}_{\chi}\frac{2r'}{r\Lambda} . \eea \end{document}