%
%LaTeX2.09 %Kiyoshi Shiraishi 1999 \documentstyle[12pt,graphics]{jarticle} \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} \newcommand{\bea}{\begin{eqnarray}} \newcommand{\eea}{\end{eqnarray}} \newcommand{\nn}{\nonumber \\} \newcommand{\vnabla}{{\bf \nabla}} \newcommand{\vsigma}{\vec{\sigma}} %\newcommand{\vsigma}{{\bf \sigma}} \newcommand{\vA}{{\bf A}} %vector potential \newcommand{\vB}{{\bf B}} % \newcommand{\vD}{{\bf D}} \newcommand{\vE}{{\bf E}} \newcommand{\vF}{{\bf F}} \newcommand{\vg}{{\bf g}} \newcommand{\vH}{{\bf H}} \newcommand{\vI}{{\bf I}} \newcommand{\vi}{{\bf i}} \newcommand{\vJ}{{\bf J}} \newcommand{\vj}{{\bf j}} \newcommand{\vk}{{\bf k}} \newcommand{\vM}{{\bf M}} \newcommand{\vn}{{\bf n}} \newcommand{\vP}{{\bf P}} \newcommand{\vp}{{\bf p}} \newcommand{\vR}{{\bf R}} \newcommand{\vr}{{\bf r}} \newcommand{\vS}{{\bf S}} \newcommand{\vs}{{\bf s}} \newcommand{\vv}{{\bf v}} \newcommand{\vx}{{\bf x}} \newcommand{\vy}{{\bf y}} \newcommand{\vzero}{{\bf 0}} \newcommand{\tr}{{\rm tr}} \newcommand{\Tr}{{\rm Tr}} \newcommand{\bx}{{x\!\!\!\mbox{-~}}} %%%%%%%%%%%%%%% %\hfill {ver. 1.0} %%%%%%%%%%%%%%% \title{Weyl変換,Weyl tensor} \author{ } \date{1999年07月07日改訂} \begin{document} \maketitle \begin{abstract} \end{abstract} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{曲率の定義} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Riemann tensor: \be R^{\mu}{}_{\sigma\beta\alpha}= \partial_{\beta}\Gamma^{\mu}_{\sigma\alpha}- \partial_{\alpha}\Gamma^{\mu}_{\sigma\beta}+ \Gamma^{\mu}_{\rho\beta}\Gamma^{\rho}_{\sigma\alpha}- \Gamma^{\mu}_{\rho\alpha}\Gamma^{\rho}_{\sigma\beta} \ee ここで \be \Gamma^{\sigma}_{\mu\nu}= \frac{1}{2}g^{\rho\sigma}\left( \partial_{\mu}g_{\nu\rho}+ \partial_{\nu}g_{\mu\rho}- \partial_{\rho}g_{\nu\mu}\right) \ee Ricci tensor: \be R_{\sigma\alpha}\equiv R^{\mu}{}_{\sigma\mu\alpha} \ee scalar curvature: \be R\equiv g^{\sigma\alpha}R_{\sigma\alpha} \ee %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Weyl変換} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Weyl変換: \be g_{\mu\nu}\rightarrow\bar{g}_{\mu\nu}=e^{2\omega}g_{\mu\nu} \ee \bigskip このとき \bea \bar{R}^{\mu}{}_{\sigma\beta\alpha}&=&R^{\mu}{}_{\sigma\beta\alpha}+ \delta^{\mu}_{\alpha}\nabla_{\beta}\nabla_{\sigma}\omega- \delta^{\mu}_{\beta}\nabla_{\alpha}\nabla_{\sigma}\omega \nn &-&g_{\sigma\alpha}\nabla_{\beta}\nabla^{\mu}\omega+ g_{\sigma\beta}\nabla_{\alpha}\nabla^{\mu}\omega- \delta^{\mu}_{\alpha}\nabla_{\beta}\omega\nabla_{\sigma}\omega \nn &+&\delta^{\mu}_{\beta}\nabla_{\alpha}\omega\nabla_{\sigma}\omega+ g_{\sigma\alpha}\nabla_{\beta}\omega\nabla^{\mu}\omega- g_{\sigma\beta}\nabla_{\alpha}\omega\nabla^{\mu}\omega \nn &-&\delta^{\mu}_{\beta}g_{\sigma\alpha}\nabla_{\lambda}\omega\nabla^{\lambda}\omega+ \delta^{\mu}_{\alpha}g_{\sigma\beta}\nabla_{\lambda}\omega\nabla^{\lambda}\omega \eea \bea \bar{R}_{\mu\nu}&=&R_{\mu\nu}- (D-2)\nabla_{\mu}\nabla_{\nu}\omega- g_{\mu\nu}\nabla^{\lambda}\nabla_{\lambda}\omega \nn &+&(D-2)\nabla_{\mu}\omega\nabla_{\nu}\omega- (D-2)g_{\mu\nu}\nabla_{\lambda}\omega\nabla^{\lambda}\omega \eea \be \bar{R}=e^{-2\omega}\left[R- 2(D-1)\nabla^{\lambda}\nabla_{\lambda}\omega- (D-1)(D-2)\nabla_{\lambda}\omega\nabla^{\lambda}\omega\right] \ee \begin{quote} \noindent \underline{exercise} scalar field $\phi$がWeyl変換の下で \be \phi\rightarrow\bar{\phi}=e^{-\frac{D-2}{2}\omega}\phi \ee と変換するものとする。 このとき \be -\frac{1}{\sqrt{-g}}\partial_{\mu}\left(\sqrt{-g}g^{\mu\nu}\partial_{\nu} \phi\right)+\frac{1}{4}\frac{D-2}{D-1}R\phi=0 \ee は,Weyl「不変」な方程式であることを示せ。 \end{quote} \begin{quote} \noindent \underline{exercise} action \be S=\int d^Dx \sqrt{-g}\left[-\frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi \partial_{\nu}\phi-\frac{1}{8}\frac{D-2}{D-1}R\phi^2\right] \ee は,Weyl不変であることを示せ。 また,Weyl不変な$\phi$の自己相互作用項をつくれ。 \end{quote} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Weyl tensor} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Weyl tensor: \bea C_{\mu\sigma\beta\alpha}&=&R_{\mu\sigma\beta\alpha} \nn &+&\frac{1}{D-2}\left(g_{\mu\alpha}R_{\sigma\beta}+ g_{\sigma\beta}R_{\mu\alpha}-g_{\mu\beta}R_{\sigma\alpha}- g_{\sigma\alpha}R_{\mu\beta}\right) \nn &+&\frac{1}{(D-1)(D-2)}\left(g_{\mu\beta}g_{\sigma\alpha}- g_{\mu\alpha}g_{\sigma\beta}\right) R \eea \bigskip \be \bar{C}_{\mu\sigma\beta\alpha}=e^{2\omega}C_{\mu\sigma\beta\alpha} \ee \bigskip 対称性: \be C_{\alpha\beta\gamma\delta}=C_{\gamma\delta\alpha\beta} \label{eq:sym1} \ee \be C_{\alpha\beta\gamma\delta}=-C_{\beta\alpha\gamma\delta}= -C_{\alpha\beta\delta\gamma} \label{eq:sym2} \ee \be C_{\alpha\beta\gamma\delta}+C_{\alpha\delta\beta\gamma}+ C_{\alpha\gamma\delta\beta}=0 \label{eq:sym3} \ee \bigskip \be C^{\alpha}{}_{\beta\alpha\delta}\equiv 0 \label{eq:trfree} \ee \bigskip Weyl tensorの独立な成分の個数は, Riemann tensor の独立成分の個数から (\ref{eq:trfree})の制限の個数をひいたものであるので, \be \frac{D^2(D^2-1)}{12}-\frac{D(D+1)}{2}=\frac{D(D+1)(D+2)(D-3)}{12} \ee である。($D\ge 3$) \begin{quote} \noindent \underline{exercise} 3次元では \be C_{\alpha\beta\gamma\delta}\equiv 0 \ee となることを示せ。 \end{quote} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\begin{thebibliography}{99} %\bibitem{Sasaki} 佐々木節 一般相対論 産業図書 %\end{thebibliography} \end{document}