%
%LaTeX2.09 %Kiyoshi Shiraishi 1999 \documentstyle[12pt,graphics]{jarticle} \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} \newcommand{\bea}{\begin{eqnarray}} \newcommand{\eea}{\end{eqnarray}} \newcommand{\nn}{\nonumber \\} \newcommand{\vnabla}{{\bf \nabla}} \newcommand{\vsigma}{\vec{\sigma}} %\newcommand{\vsigma}{{\bf \sigma}} \newcommand{\vA}{{\bf A}} %vector potential \newcommand{\vB}{{\bf B}} % \newcommand{\vD}{{\bf D}} \newcommand{\vE}{{\bf E}} \newcommand{\vF}{{\bf F}} \newcommand{\vg}{{\bf g}} \newcommand{\vH}{{\bf H}} \newcommand{\vI}{{\bf I}} \newcommand{\vi}{{\bf i}} \newcommand{\vJ}{{\bf J}} \newcommand{\vj}{{\bf j}} \newcommand{\vk}{{\bf k}} \newcommand{\vM}{{\bf M}} \newcommand{\vn}{{\bf n}} \newcommand{\vP}{{\bf P}} \newcommand{\vp}{{\bf p}} \newcommand{\vR}{{\bf R}} \newcommand{\vr}{{\bf r}} \newcommand{\vS}{{\bf S}} \newcommand{\vs}{{\bf s}} \newcommand{\vv}{{\bf v}} \newcommand{\vx}{{\bf x}} \newcommand{\vy}{{\bf y}} \newcommand{\vzero}{{\bf 0}} \newcommand{\tr}{{\rm tr}} \newcommand{\Tr}{{\rm Tr}} \newcommand{\bx}{{x\!\!\!\mbox{-~}}} %%%%%%%%%%%%%%% %\hfill {ver. 1.0} %%%%%%%%%%%%%%% \title{Riemann tensor の対称性} \author{ } \date{1999年07月07日改訂} \begin{document} \maketitle \begin{abstract} \end{abstract} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Riemann tensor の対称性} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Riemann tensor: \be R^{\mu}{}_{\sigma\beta\alpha}= \partial_{\beta}\Gamma^{\mu}_{\sigma\alpha}- \partial_{\alpha}\Gamma^{\mu}_{\sigma\beta}+ \Gamma^{\mu}_{\rho\beta}\Gamma^{\rho}_{\sigma\alpha}- \Gamma^{\mu}_{\rho\alpha}\Gamma^{\rho}_{\sigma\beta} \ee ここで \be \Gamma^{\sigma}_{\mu\nu}= \frac{1}{2}g^{\rho\sigma}\left( \partial_{\mu}g_{\nu\rho}+ \partial_{\nu}g_{\mu\rho}- \partial_{\rho}g_{\nu\mu}\right) \ee \bigskip 自由落下座標系(局所慣性系)では,$\Gamma^{\sigma}_{\mu\nu}$の 全ての成分がゼロになる。 \be \nabla_{\sigma}g_{\mu\nu}\equiv 0 \ee より \be \Gamma^{\sigma}_{\mu\nu}=0\Leftrightarrow \partial_{\sigma}g_{\mu\nu}=0 \ee つねに自由落下座標系を局所的にとることができる。 また,局所的に \be g_{\mu\nu}=\eta_{\mu\nu} \ee とすることができる。 \bigskip この座標系で Riemann tensor (第一指標を下げたもの)は \bea R_{\lambda\sigma\beta\alpha}&=& g_{\lambda\mu}R^{\mu}_{\sigma\beta\alpha} \nn &=& g_{\lambda\mu}\partial_{\beta}\Gamma^{\mu}_{\sigma\alpha}- g_{\lambda\mu}\partial_{\alpha}\Gamma^{\mu}_{\sigma\beta} \nn &=& \frac{1}{2}\partial_{\beta} \left(\partial_{\sigma}g_{\alpha\lambda}+ \partial_{\alpha}g_{\sigma\lambda}- \partial_{\lambda}g_{\alpha\sigma} \right)- \frac{1}{2}\partial_{\alpha} \left(\partial_{\sigma}g_{\beta\lambda}+ \partial_{\beta}g_{\sigma\lambda}- \partial_{\lambda}g_{\beta\sigma} \right) \nn &=& -\frac{1}{2}\left( \partial_{\lambda}\partial_{\beta}g_{\alpha\sigma}- \partial_{\lambda}\partial_{\alpha}g_{\beta\sigma}+ \partial_{\sigma}\partial_{\alpha}g_{\lambda\beta}- \partial_{\sigma}\partial_{\beta}g_{\lambda\alpha} \right) \eea \bigskip この表式で以下の対称性は明らか。 \be R_{\alpha\beta\gamma\delta}=R_{\gamma\delta\alpha\beta} \label{eq:sym1} \ee \be R_{\alpha\beta\gamma\delta}=-R_{\beta\alpha\gamma\delta}= -R_{\alpha\beta\delta\gamma} \label{eq:sym2} \ee \be R_{\alpha\beta\gamma\delta}+R_{\alpha\delta\beta\gamma}+ R_{\alpha\gamma\delta\beta}=0 \label{eq:sym3} \ee \bigskip $R_{\alpha\beta\gamma\delta}$はテンソルなので, この対称性は一般の座標系において成り立つ。 \begin{quote} \noindent \underline{exercise} 恒等式 \be \left[\nabla_{\lambda}, \left[\nabla_{\mu},\nabla_{\nu}\right]\right]\phi+ \left[\nabla_{\nu}, \left[\nabla_{\lambda},\nabla_{\mu}\right]\right]\phi+ \left[\nabla_{\mu}, \left[\nabla_{\nu},\nabla_{\lambda}\right]\right]\phi=0 \ee から,(\ref{eq:sym3}) を導け。 \end{quote} \begin{quote} \noindent \underline{exercise} ある点$X^{\mu}_0$で局所慣性系をとる。 このときその近傍$X^{\mu}_0+\xi^{\mu}$での計量は \be g_{\mu\nu}(X^{\mu}_0+\xi^{\mu})=\eta_{\mu\nu}-\frac{1}{3} R_{\mu\lambda\nu\sigma}(X^{\mu}_0)\xi^{\lambda}\xi^{\sigma}+O(\xi^3) \ee となる。これを確かめよ。 \end{quote} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Bianchi identity} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Bianchi identity: \be \nabla_{\lambda}R_{\alpha\beta\mu\nu}+ \nabla_{\nu}R_{\alpha\beta\lambda\mu}+ \nabla_{\mu}R_{\alpha\beta\nu\lambda}=0 \label{eq:Bianchi} \ee この恒等式も,自由落下座標系において具体的に示すことができる。 \begin{quote} \noindent \underline{exercise} 恒等式 \be \left[\nabla_{\lambda}, \left[\nabla_{\mu},\nabla_{\nu}\right]\right]A^{\alpha}+ \left[\nabla_{\nu}, \left[\nabla_{\lambda},\nabla_{\mu}\right]\right]A^{\alpha}+ \left[\nabla_{\mu}, \left[\nabla_{\nu},\nabla_{\lambda}\right]\right]A^{\alpha}=0 \ee および(\ref{eq:sym3})から,(\ref{eq:Bianchi}) を導け。 \end{quote} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{divergence-free tensor} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Bianchi identity において,$g^{\alpha\mu}$をかけて縮約をとると \be \nabla_{\lambda}R_{\beta\nu}-\nabla_{\nu}R_{\beta\lambda}+ \nabla_{\mu}R^{\mu}{}_{\beta\nu\lambda}=0 \ee ここで \be R_{\beta\delta}\equiv g^{\alpha\gamma}R_{\alpha\beta\gamma\delta} \ee は Ricci tensor。 \bigskip さらに,$g^{\beta\nu}$をかけて縮約をとると \be \nabla_{\lambda}R-\nabla_{\nu}R^{\nu}{}_{\lambda}- \nabla_{\mu}R^{\mu}{}_{\lambda}=0 \ee すなわち \be \nabla_{\lambda}R-2\nabla_{\mu}R^{\mu}{}_{\lambda}=0 \ee ここで \be R\equiv g^{\mu\nu}R_{\mu\nu} \ee はスカラー曲率。 \bigskip 書き換えると \be \nabla_{\mu}\left(R^{\mu}{}_{\lambda}- \frac{1}{2}\delta^{\mu}_{\lambda}R\right)=0 \ee あるいは \be \nabla_{\mu}\left(R^{\mu\nu}- \frac{1}{2}g^{\mu\nu}R\right)=0 \ee \bigskip Einstein tensor $G_{\mu\nu}$ を次のように定義する。 \be G_{\mu\nu}\equiv R_{\mu\nu}-\frac{1}{2}g_{\mu\nu}R \ee このとき \be \nabla_{\mu}G^{\mu\nu}=0 \ee を満たすことがわかる。 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Riemann tensor の独立な成分} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Riemann tensor の独立な成分の数:四次元の場合} 四次元の場合,地道に数えてみる。 \bigskip $R_{\alpha\beta\gamma\delta}$において, $\alpha$と$\beta$は反対称なので, $\alpha$と$\beta$の組のとりうる場合の数は, \be \frac{4\times 3}{2}=6 \ee $\gamma$と$\delta$の組についても同様で,$6$通り。 \bigskip $R_{\alpha\beta\gamma\delta}$を$R_{(\alpha\beta)(\gamma\delta)}$ とみると,$(\alpha\beta)$と$(\gamma\delta)$について対称なので, 可能な場合の数は \be \frac{6\times 7}{2}=21 \ee \bigskip これでおわりか?まだまだ。 \bigskip ここまでで可能な指標は \bea (\alpha\beta\gamma\delta)&=& (0101),(0102),(0103),(0112),(0113),(0123),\nn & &(0202),(0203),(0212),(0213),(0223), (0303),\nn & &(0312),(0313),(0323), (1212),(1213),(1223),\nn & &(1313),(1323),(2323) \eea の$21$個であるが,このうち \be R_{0123}-R_{0213}+R_{0312}=0 \ee なので,一つは独立ではない (また,これ以外には従属関係はない)。 \bigskip したがって,四次元の場合,Riemann tensor の独立な成分の数は$20$個である。 \subsection{Riemann tensor の独立な成分の数:$D$次元の場合} 効率よく数えよう。 \bigskip 条件(\ref{eq:sym2})だけからは,可能な数は \be \frac{D(D-1)}{2}\times\frac{D(D-1)}{2}=\frac{D^2(D-1)^2}{4} \ee だけある。 条件式(\ref{eq:sym3})の数は, \be D\times\frac{D(D-1)(D-2)}{3!}=\frac{D^2(D-1)(D-2)}{6} \ee 個ある。したがって,独立な成分の個数は \be \frac{D^2(D-1)^2}{4}-\frac{D^2(D-1)(D-2)}{6}=\frac{D^2(D^2-1)}{12} \ee である。 \bigskip 実は,性質(\ref{eq:sym1})は(\ref{eq:sym2})と(\ref{eq:sym3})から 導くことができる。 \begin{quote} \noindent \underline{exercise} このことを示せ。 \end{quote} 結局,$D$次元においては,Riemann tensor の独立成分の個数は \be \frac{D^2(D^2-1)}{12} \ee である。 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{2次元におけるRiemann tensor} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $\mu, \nu=1, 2$とする。 \bigskip 2次元において独立な Riemann tensor の成分は \be R_{1212} \ee だけである。 \bigskip Ricci tensor の成分は \bea R_{11}&=&g^{22}R_{2121}=g^{22}R_{1212} \nn R_{22}&=&g^{11}R_{1212} \nn R_{12}&=&R_{21} \nn &=&g^{21}R_{2112}=-g^{12}R_{1212} \eea スカラー曲率は \bea R&=&g^{11}R_{11}+g^{22}R_{22}+2g^{12}R_{12} \nn &=&2g^{11}g^{22}R_{1212}-2g^{12}g^{12}R_{1212} \nn &=&2\left(g^{11}g^{22}-g^{12}g^{12}\right)R_{1212} \eea ところで \bea g^{11}&=&\frac{1}{g}g_{22} \nn g^{22}&=&\frac{1}{g}g_{11} \nn g^{12}&=&-\frac{1}{g}g_{12} \eea ここで \be g=g_{11}g_{22}-g_{12}g_{12} \ee なので \bea R_{11}&=&\frac{1}{g}g_{11}R_{1212} \nn R_{22}&=&\frac{1}{g}g_{22}R_{1212} \nn R_{12}&=&\frac{1}{g}g_{12}R_{1212} \eea また \be g^{11}g^{22}-g^{12}g^{12}=\frac{1}{g} \ee なので \be R=\frac{2}{g}R_{1212} \ee \bigskip 以上のことから \be R_{\mu\nu}-\frac{1}{2}g_{\mu\nu}R=0 \ee \be R_{\mu\nu\rho\sigma}=\frac{1}{2} R\left(g_{\mu\rho}g_{\nu\sigma}- g_{\mu\sigma}g_{\nu\rho}\right) \ee %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{3次元におけるRiemann tensor} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $\mu, \nu=1, 2, 3$とする。 \bigskip 3次元において独立な Riemann tensor の成分は \be R_{1212},~~R_{1223},~~R_{1231},~~ R_{2323},~~R_{2331},~~R_{3131} \ee の$6$個である。 \bigskip 独立な Ricci tensor の成分は \bea R_{11}&=&g^{22}R_{2121}+g^{33}R_{3131}+g^{23}R_{2131}+g^{32}R_{3121} \nn &=&g^{22}R_{1212}+g^{33}R_{3131}-2g^{23}R_{1231} \nn R_{22}&=&g^{11}R_{1212}+g^{33}R_{3232}+g^{31}R_{3212}+g^{13}R_{1232} \nn &=&g^{11}R_{1212}+g^{33}R_{2323}-2g^{31}R_{1223} \nn R_{33}&=&g^{11}R_{1313}+g^{22}R_{2323}+g^{12}R_{1323}+g^{21}R_{2313} \nn &=&g^{11}R_{3131}+g^{22}R_{2323}-2g^{12}R_{2331} \nn R_{12}&=&g^{21}R_{2112}+g^{23}R_{2132}+g^{31}R_{3112}+g^{33}R_{3132} \nn &=&-g^{12}R_{1212}+g^{23}R_{1223}+g^{13}R_{1231}-g^{33}R_{2331} \nn R_{23}&=&g^{12}R_{1223}+g^{11}R_{1213}+g^{32}R_{3223}+g^{31}R_{3213} \nn &=&g^{12}R_{1223}-g^{11}R_{1231}-g^{23}R_{2323}+g^{13}R_{2331} \nn R_{31}&=&g^{22}R_{2321}+g^{12}R_{1321}+g^{13}R_{1331}+g^{23}R_{2331} \nn &=&-g^{22}R_{1223}+g^{12}R_{1231}-g^{13}R_{3131}+g^{23}R_{2331} \eea \bigskip 自由落下座標系(局所慣性系)を用いる。 さらに,$g_{\mu\nu}(P)=\delta_{\mu\nu}$とする。 \be \left(\begin{array}{c} R_{11} \\ R_{22} \\ R_{33} \\ R_{12} \\ R_{23} \\ R_{31} \end{array}\right) = \left(\begin{array}{cccccc} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{array}\right) \left(\begin{array}{c} R_{2323} \\ R_{3131} \\ R_{1212} \\ R_{2331} \\ R_{3112} \\ R_{1223} \end{array}\right) \ee \be \left(\begin{array}{c} R_{2323} \\ R_{3131} \\ R_{1212} \\ R_{2331} \\ R_{3112} \\ R_{1223} \end{array}\right) = \left(\begin{array}{cccccc} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{array}\right) \left(\begin{array}{c} R_{11} \\ R_{22} \\ R_{33} \\ R_{12} \\ R_{23} \\ R_{31} \end{array}\right) \ee \bigskip このことから,次のことがわかるか? \bea R_{\alpha\beta\gamma\delta}&=& R_{\alpha\gamma}g_{\beta\delta}+ R_{\beta\delta}g_{\alpha\gamma}- R_{\alpha\delta}g_{\beta\gamma}- R_{\beta\gamma}g_{\alpha\delta} \nn &-&\frac{1}{2}R\left( g_{\alpha\gamma}g_{\beta\delta}- g_{\alpha\delta}g_{\beta\gamma} \right) \eea %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{thebibliography}{99} \bibitem{Sasaki} 佐々木節 一般相対論 産業図書 \end{thebibliography} \end{document}